A challenge for the type system

Wiles’ proof of Fermat’s Last Theorem uses many sources, some of which rely on advanced set theory. Most theorem provers use a type system to prohibit undefined expressions. If we want to formalize Wiles’ proof without modification, we therefore need a theorem prover with a powerful type system.

The following is a short introduction to category theory followed by an excerpt from chapter 0 of [2] (EGA I for the insiders).

Naive category theory

Recall that a category is a class of objects together with a prescription that assigns to every pair of objects of the class, say X and Y, a set of morphisms from X to Y, and a composition operator between morphisms.

If C is a category, we write $\text{Ob}(C)$ to denote the class of objects of C. We write $C(X,Y)$ to denote the set of morphisms from X to Y. For every triple of objects X, Y, Z, the composition gives a function $C(Y,Z) \times C(X,Y) \to C(X,Z)$: if $f \in C(X,Y)$ and $g \in C(Y,Z)$ then $g \circ f \in C(X,Z)$.

This composition is required to be associative: if $f \in C(X,Y)$ and $g \in C(Y,Z)$ and $h \in C(Z,W)$, then $(h \circ g) \circ f = h \circ (g \circ f)$. It is also required that every object X has an identity morphism $1_X \in C(X,X)$ such that $g \circ 1_X = g$ for every $g \in C(X,Y)$ and $1_X \circ h = h$ for every $h \in C(Y,X)$.

Let Set be the category with all sets as objects and with functions as morphisms. A category C is called small if $\text{Ob}(C)$ is a set (not only a class). The category Set is not small.

If (P, \leq) is a partially ordered set, we can make it into a small category in the following way. Put $\text{Ob}(P) = P$. If $x \leq y$, let $P(x,y)$ be the singleton set that only contains the pair $\langle x, y \rangle$, otherwise $P(x,y)$ is empty.

If G is a monoid (or a group), we can make it into a small category, by giving it a single object, say \ast, and defining $G(\ast, \ast) = G$ with the composition equal to the monoid operation.

Top is the category of the topological spaces as objects and the continuous functions between them as morphisms.

If C is a category, we define the dual or opposite category C° as follows. $\text{Ob}(C^\circ) = \text{Ob}(C)$. For every pair of objects X and Y of C, we take $C^\circ(X,Y) = C(Y,X)$. The composition of C° is the transpose of the composition of C.

Functors and natural transformations

If C and D are categories, a functor $F : C \to D$ is a prescription that assigns to every object X of C an object $F(X)$ of D, and to every morphism $f \in C(X,Y)$ a morphism $F(f) \in D(F(X),F(Y))$, in such a way that identity morphisms are mapped to identity morphisms and F distributes over composition of morphisms.

If $F, G : C \to D$ are two functors from C to D, a natural transformation from F to G is a prescription, say t, that assigns to every object X of C a morphism $t_X \in D(F(X),G(X))$ such that, for every morphism $f \in C(X,Y)$, we have $t_Y \circ F(f) = G(f) \circ t_X$ in $D(F(X),G(Y))$.

Now $\text{Funct}(C, D)$ is the category with functors from C to D as objects and natural transformations from F to G as morphisms.

Presheaves on a topological space

Let X be a topological space. We write $|X|$ to denote the set of open subsets of X, partially ordered by inclusion. Let $|X|^\circ$ be the opposite category, so that open
subsets $U \subseteq V \subseteq X$ induce a morphism (U, V) in $|X|^\alpha(V, U)$. A presheaf on X with values in a category C is a functor from $|X|^\alpha$ to C. If P is such a presheaf, the morphism $P((V, U)) \in C(P(V), P(U))$ is called the restriction from V to U.

If C is the category of groups, rings, etc., then presheaves with values in C are called presheaves of groups, or rings, etc.

Sheaves are presheaves that satisfy certain additional conditions.

A ringed space is defined as a topological space together with a sheaf of rings. There is a natural way to form a category RiSp of ringed spaces, with a natural “forgetful” functor to Top.

Yoneda’s Lemma

For any category C, we define $C^\alpha = \text{Funct}(C^\alpha, \text{Set})$. We define a functor $h : C \to C^\alpha$ in the following way. For every object X of C, we should get a functor $h(X) : C^\alpha \to \text{Set}$: for every object Y of C, we define the set $h(X)(Y) = C(Y, X)$. If $f \in C(Y, Z)$, then $f \in C^\alpha(Z, Y)$ and we define $h(X)(f) \in \text{Set}(h(X)(Z), h(X)(Y)) = \text{Set}(C(Z, X), C(Y, X)) = h(X)(f) = (\lambda g \cdot g \circ f)$. This standard verification to see that this makes $h(X)$ to an object of C^α.

There is only one natural way to define h on morphisms of C, namely with $h(f)\rho = (\lambda u \cdot f \circ u)$. The verification that this makes h into a functor from C to C^α is standard.

Lemma 1 For every object X of C and every object F of C^α, there is a natural bijection $F(X) \to C^\alpha(h(X), F)$. If $F = h(Y)$, this bijection equals the corresponding branch of the functor h.

Proof To find a bijection $t : F(X) \to C^\alpha(h(X), F)$, one proceeds as follows. Let $f \in F(X)$. We have to construct some $t(f) \in C^\alpha(h(X), F)$. Let Y be an object of C. We have to construct some function $t(f)_Y : h(X)(Y) \to F(Y)$. Let $g \in h(X)(Y) = C(Y, X)$. We have to construct $t(f)_Y(g) \in F(Y)$. Since F is a contravariant functor from C to Set, we have a function $F(g) : F(X) \to F(Y)$.

This implies that we can define $t(f)_Y(g) = F(g)(f)$. Abstraction gives $t(f)_Y = (\lambda g \cdot F(g)(f))$. We can then verify that the family of functions $(t(f)_Y)_Y$ is a natural transformation $h(X) \to F$. This gives us a function $t : F(X) \to C^\alpha(h(X), F)$.

Conversely, $s = (\lambda u \cdot u_1(1_X))$ is a function $C^\alpha(h(X), F) \to F(X)$ and a straightforward computation gives that $s \circ t$ and $t \circ s$ are both identity functions. Therefore t is a bijection. The special case of $F = h(Y)$ may be left to the reader. □

This result implies that the category C can be identified in a natural way as a nice subcategory of C^α. An functor in (or object of) C^α is called representable if it is isomorphic in C^α to an object of the form $h(X)$.

This Lemma is applied in various forms in the sources used in Wiles’ proof, usually, with category C not small. In other words, we need this result in a form where C can be instantiated with an arbitrary (not necessarily small) category.

Strictly speaking, all this requires a hierarchy of universes, and the theory may become parametrized by a universe, see [1] p.1–8.

References