
Technical Report

Verification of MCSHLi (whh596B)

Wim H. Hesselink, Peter A. Buhr, Ting-Ching Li

July 5, 2023

1 Introduction

This technical report supports the article [4] by verifying mutual exclusion, proper handling of pointers,
and absence of deadlock. It has been developed with the proof assistant PVS [5]. The corresponding
proof script can be obtained from [1].

1.1 Machines and threaded machines

The concurrent algorithm MCSHLi is modelled here as a threaded machine, as used in (e.g.) [2].
Recall that a machine or state machine is a tuple K = (X,X0, N) where X is a set, X0 is a subset of

X, and N is a reflexive binary relation on X. The elements of X are called states, X0 is the initialization,
N is the next-state relation.

An execution of machine K is a sequence of states that begins in the initialization and in which every
pair of subsequent states satisfies the next-state relation. Formally, it is a function xs : N→ X such that
xs(0) ∈ X0 and that (xs(n), xs(n + 1)) ∈ N for all n ∈ N.

A predicate is a Boolean function on the state space X. A predicate P can also be regarded as the
subset of X where P holds. A predicate is called an invariant of machine K iff it contains all states of
all executions of K.

A threaded machine has a set T of thread identifiers (natural numbers). Its next-state relation is a
union N = 1X ∪

⋃
p∈T Np, where 1X is the equality relation on X, and Np is a next-state relation for

thread p. The elements of Np are regarded as steps that thread p can perform. So, apart from stuttering
in 1X , every step is done by some thread.

1.2 Invariants

We need a bit of theory concerning invariants and propose a method for obtaining and proving them.
A subrelation of the next-state relation N is called a command. For a command S and predicates P

and Q, the Hoare triple {P}S{Q} is the proposition that

∀ x, y : (x, y) ∈ S ∧ x ∈ P ⇒ y ∈ Q , or equivalently
[P ⇒ wp(S,Q)] ,

where wp stands for Dijkstra’s weakest precondition.
A predicate P is said to be preserved by command S iff {P}S{P}. Predicate P is called stable if it is

preserved by the next-state relation N . A predicate is called inductive iff it is stable and holds initially.
Every inductive predicate is an invariant.

A predicate P is said to be threatened by a command S iff it is not preserved by S. If predicate P is
threatened by command S, a predicate Q is called a remedy for P and S iff {P ∧Q}S{P}.

Let C be a set of commands such that N = 1X ∪
⋃
C. A family of predicates is called complete if any

member of the family that is threatened by any command in C, has some remedy consisting of members
of the family. The conjunction of a complete family is stable. The family is said to be initialized if the

1



whh596B – 2

initial condition implies every member of the family. The conjunction of an initialized complete family
is an inductive predicate; every member of it is an invariant because it is implied by an invariant. This
is the method used below to obtain and prove invariants. It is presumably well known, but it was first
made explicit in [2].

For this paper, the proof assistant PVS [5] has been used to determine and verify the threatenings
and the remedies for the invariants. We use predicates with names of the form Xqd for the ease of using
query-replace in the PVS proof script. This script can be obtained from [1].

2 The correctness of the lock MCSHLi

In Section 2.1, the algorithm MCSHLi is modelled by a transition system. In Section 2.2, the method
of Section 1.2 is used to generate a family of invariants that proves mutual exclusion. Section 2.3 proves
that the algorithm is deadlock free.

2.1 Modelling MCSHLi for correctness

The starting point is the transition system of Figure 2 of [4], rendered here as Figure 1.
Recall that each line number stands for one atomic command. The implicit private variable pcq

indicates the line number that thread q is to execute next. To indicate which threads are where in the
execution, we use the state-dependent sets of threads:

[k] = {q | pcq = k} ,
[j, k] = {q | j ≤ pcq ≤ k} .

The first aim is to prove mutual exclusion. As CS is at line 27, this is expressed by the predicate

MX0: q ∈ [27] ∧ r ∈ [27] ⇒ q = r .

From this point onward, the predicates are given with implicit universal quantification over all free
variables (here q and r).

2.2 Mutual exclusion for MCSHLi

In this section, the method of Section 1.2 is used to generate the invariants for mutual exclusion. The
transition system has only 19 transitions. More than 40 invariants are needed to prove mutual exclusion.

For line number k and thread p, let Np,k be the command that corresponds to execution of line k by
thread p. Let C be the set of all these commands. The idea is to construct a family of predicates such
that every member of it that is threatened by some command in C has a remedy in the family. In most
cases, the command is indicated by the line number, while the acting thread p is kept implicit.

Before proceeding into meaningful invariants, note that by construction it always holds that myq 6= ⊥
and that 1 ≤ low and 1 ≤ high. These obvious invariants are used implicitly.

The first claim is that the ghost variables slotq and low satisfy the invariants

Iq1: slotq = slotr 6= 0 ⇒ q = r ,
Iq2: q ∈M ⇒ slotq = low ,

where M = M1 ∪M2 ∪M3 and

F = {q | (q ∈ [15] ∧ prevq = ⊥) ∨ q ∈ [16]} ,
M1 = {q | q ∈ F ∧ flag} ,
M2 = {q | q ∈ [19] ∧ ¬ locked(myq)} ,
M3 = [17] ∪ [20, 29] .

It is easy to see that the predicates Iq1 and Iq2 together imply MX0. In fact, they imply the much
stronger assertion

MX1: q ∈M ∧ r ∈M ⇒ q = r .



whh596B – 3

initially:
flag = true ∧ tail = ⊥ ∧ local = {⊥}
∧ low = high = 1
∧ ∀ q ∈ thread : pcq = 11 ∧ slotq = 0 .

loop of thread p :
11 NCS ;

choose myp /∈ local ; add myp to local ;
12 next(myp) := ⊥ ;
13 locked(myp) := true ;
14 prevp := tail ; tail := myp ;

slotp := high ; high++ ;
15 if prevp = ⊥ then
16 await (flag) ;
17 flag := false

else
18 next(prevp) := myp ;
19 await (¬ locked(myp))

endif ;
20 nxmyp := succp := next(myp) ;
21 if succp = ⊥ then
22 if tail = myp then tail := ⊥

else
23 await (next(myp) 6= ⊥) ;
24 nxmyp := succp := next(myp)

endif
endif ;

25 mess := succp ;
26 succp := ⊥ ; remove myp from local ;
27 CS ;
28 succp := mess ;
29 if succp 6= ⊥ then locked(succp) := false

else flag := true endif ;
low++

endloop .

Figure 1: State machine of the lock MCSHLi, with ghost variables



whh596B – 4

We now take Iq1 and Iq2 as the founding members of an initialized complete family. This family is
constructed in the following way. For each new member of the family, a list of line numbers of threatening
commands is determined, with for each line number a remedy that is a conjunction of one or more, possibly
new, members. As announced above, this analysis was performed with the proof assistant PVS [5], see the
proof script in [1]. It turns out that 41 members are needed to make the family complete. All members
hold initially.

The construction goes as follows. Predicate Iq1 is threatened only by step 14. It has the remedy

Iq3: slotq < high .

Predicate Iq2 is threatened only by steps 14, 18, 29. At 14 and 18, it has the respective remedies

Iq4: tail = ⊥ ∧ flag ⇒ low = high .
Iq5: q ∈ [14, 18] ⇒ locked(myq) .

At step 29, it has as remedy the conjunction of Iq1, Iq2, and

Iq6: q ∈ F ∧ r ∈ [20, 29] ⇒ low + 1 = slotq ,
Iq7: q ∈ [21, 26] ∨ q ∈ [29] ⇒ succq = nxmyq ,
Iq8: q ∈ [21, 29] ∧ nxmyq = myr ∧ r ∈ [15, 26] ⇒ low + 1 = slotr .

Predicate Iq3 is inductive. Predicate Iq4 is threatened only by the steps 22 and 29. It has the
remedies Jq1 at 22, and Jq2 and Jq3 at 29, where

Jq1: q ∈ [20, 29] ⇒ ¬ flag .
Jq2: q ∈ [25, 29] ∧ tail = ⊥ ⇒ nxmyq = ⊥ .
Jq3: q ∈ [25, 29] ∧ tail = ⊥ ⇒ low + 1 = high .

Predicate Iq5 is threatened only by step 29. It has the remedies Iq7 and

Jq4: q ∈ [21, 29] ∧ r ∈ [12, 18] ⇒ nxmyq 6= myr .

Predicate Iq6 is threatened only by the steps 14, 17, 19, 29. At step 14, it has the remedies Jq3 and

Jq5: q ∈ [15, 24] ⇒ tail 6= ⊥ .

At step 29, it has the remedy MX1. At the steps 17 and 19, it has the respective remedies

Jq6: q ∈ F ∧ r ∈ [17] ⇒ slotq = low + 1 ,
Jq7: q ∈ F ∧ r ∈ [19] ∧ ¬ locked(myr) ⇒ slotq = low + 1 .

Predicate Iq7 is threatened only by step 28. It has the remedy

Jq8: q ∈ [26, 28] ⇒ mess = nxmyq .

Predicate Iq8 is threatened only by steps 14, 20, 24, and 29. At steps 14 and 29, it has the respective
remedies Jq4 and MX1. At steps 20 and 24, it has as remedy the conjunction of Iq2 and

Jq9: q ∈ [15, 26] ∧ r ∈ [15, 26] ∧ next(myq) = myr ⇒ slotq + 1 = slotr .

Note that this predicate shows that the waiting threads form a queue numbered by slot.
Predicate Jq1 is threatened only by the steps 19 and 29. At 29 it has the remedy MX1, at 19 the

remedy

Kq1: q ∈ [19] ∧ ¬ locked(myq) ⇒ ¬ flag .

Predicate Jq2 is threatened only by the steps 21, 22, 24. At 21 and 24, it has the remedy Jq5. At
22, it has the remedies MX1 and

Kq2: q ∈ [21, 26] ∧ myq = tail ⇒ nxmyq = ⊥ .



whh596B – 5

Predicate Jq3 is threatened only by the steps 21, 22, 24, 29. At 21 and 24, it has the remedy Jq5. At
29, it has the remedy MX1. At 22, it has the remedies Iq2 and

Kq3: q ∈ [15, 26] ∧ myq = tail ⇒ slotq + 1 = high .

Predicate Jq4 is threatened only by the steps 11, 20, 24. At 11, it has the remedy Kq4, at 20 and 24
the remedy Kq5, where

Kq4: q ∈ [21, 29] ⇒ nxmyq ∈ local ,
Kq5: q ∈ [15, 26] ∧ r ∈ [12, 26] ∧ next(myq) = myr ⇒ r ∈ [19] .

Predicate Jq5 is threatened only by step 22. It has the remedy Iq1, Iq2, Iq3, Kq3, and

Kq6: q ∈ [15, 29] ⇒ low ≤ slotq .

Together with Iq3, this predicate implies that the slots are bounded by

q ∈ [15, 29] ⇒ low ≤ slotq < high .

Predicate Jq6 is threatened only by the steps 14, 16, 29. It has the remedies Jq5 at 14 and MX1 at
29. At 16, it has the remedy

Kq7: q ∈ F ∧ r ∈ F ⇒ q = r .

Predicate Jq7 is threatened only by the steps 14, 18, 29. It has the remedies Jq5 at 14 and Iq5 at 18.
At 29, it has the remedies MX1, Iq1, Iq6, Iq7, Iq8.

Predicate Jq8 is threatened only by step 25. It has the remedies MX1 and Iq7.
Predicate Jq9 is threatened only by the steps 14 and 18. At step 14, it has the remedies Kq5 and

Kq8: q ∈ [13, 14] ⇒ next(myq) = ⊥ .

At step 18, it has the remedies

Lq1: q ∈ [12, 26] ∧ r ∈ [12, 26] ∧ myq = myr ⇒ q = r ,
Lq2: q ∈ [15, 26] ∧ r ∈ [15, 18] ∧ myq = prevr ⇒ slotq + 1 = slotr .

Predicate Kq1 is threatened only by the steps 18 and 29. At step 18, it has the remedy Iq5, at step
29 the remedies MX1 and Jq1.

Predicate Kq2 is threatened only by the steps 14, 20, 24. At step 14, it has the remedy Lq1, at steps
20 and 24 the remedy

Lq3: tail = ⊥ ∨ next(tail) = ⊥ .

Predicate Kq3 is threatened only by step 14. It has the remedy Lq1.
Predicate Kq4 is threatened only by the steps 20, 24, 26. At step 26, it has the remedies Iq2 and Iq8.

At steps 20 and 24, it has the remedy

Lq4: q ∈ [15, 26] ⇒ next(myq) ∈ local .

Predicate Kq5 is threatened only by the steps 11, 14, 18, 19. At step 11, it has the remedy Lq4, at
step 14 the remedy Kq8, at step 18 the remedy Lq1, at step 19 the remedies Iq1, Iq2, Jq9, Kq6.

Predicate Kq6 is threatened only by the steps 14 and 29. At step 14, it has the remedy Lq5, at step
29 the remedies Iq1, Iq2, and Lq5, where

Lq5: low ≤ high .

Predicate Kq7 is threatened only by step 14. It has the remedy Jq5.
Predicate Kq8 is threatened only by step 18. It has the remedy

Lq6: q ∈ [12, 14] ∧ r ∈ [15, 18] ⇒ myq 6= prevr .

Predicate Lq1 is threatened only by step 11. It has the remedy



whh596B – 6

Lq7: q ∈ [12, 26] ⇒ myq ∈ local .

Predicate Lq2 is threatened only by step 14. It has the remedies Kq3, Lq6, and

Lq8: q ∈ [12, 14] ⇒ myq 6= tail .

Predicate Lq3 is threatened only by the steps 14 and 18. At step 14, it has the remedy Kq8. At step
18, it has the remedy

Mq1: q ∈ [15, 18] ⇒ prevq 6= tail .

Predicate Lq4 is threatened only by the steps 12, 14, 18, 26. At step 12, it has the remedy

Mq2: ⊥ ∈ local .

At step 14, it has the remedies Kq8 and Mq2, at step 18 the remedy Lq7, at step 26 the remedies Iq2,
Jq9, Kq6.

Predicate Lq5 is threatened only by step 29. It has the remedies Iq2 and Iq3.
Predicate Lq6 is threatened only by the steps 11 and 14. At step 14, it has the remedy Lq8, at step

11 the remedy

Mq3: q ∈ [15, 18] ⇒ prevq ∈ local .

Predicate Lq7 is threatened only by step 26. It has the remedy Lq1.
Predicate Lq8 is threatened only by the steps 11 and 14. At step 14, it has the remedy Mq1, at step

11 the remedy

Mq4: tail ∈ local .

Predicate Mq1 is threatened only by the steps 14 and 22. At step 14, it has the remedies Lq6 and
Lq8, at step 22 the remedies Iq1, Iq2, Iq3, Kq3, Kq6.

Predicate Mq2 is inductive.
Predicate Mq3 is threatened only by the steps 14 and 26. At step 14, it has the remedy Mq4, at step

26 the remedy

Mq5: q ∈ [24, 26] ∧ r ∈ [15, 18] ⇒ myq 6= prevr .

Predicate Mq4 is threatened only by the steps 14, 22, and 26. At step 14, it has the remedy Lq7, at
step 22 the remedy Mq2, at step 26 the remedy

Mq6: q ∈ [23, 26] ⇒ myq 6= tail .

Predicate Mq5 is threatened only by the steps 14, 21, 22, and 23. At step 14, it has the remedy Mq6,
at step 21 the remedies Mq2 and Mq7, at step 22 the remedy Mq1, at step 23 the remedy Mq8, where

Mq7: q ∈ [21, 26] ∧ r ∈ [15, 18] ∧ myq = prevr ⇒ nxmyq = ⊥ .
Mq8: q ∈ [15, 26] ∧ r ∈ [15, 18] ∧ myq = prevr ⇒ next(myq) = ⊥ .

Predicate Mq6 is threatened only by the steps 14 and 21. At step 14, it has the remedy Lq1, at step
21 the remedies Iq7 and Kq2.

Predicate Mq7 is threatened only by the steps 14, 20, and 24. At step 14, it has the remedy Kq2, at
steps 20 and 24 the remedy Mq8.

Predicate Mq8 is threatened only by the steps 14 and 18. At step 14, it has the remedies Kq8 and
Lq3, at step 18 the remedies Iq1 and Lq2.

This concludes the construction of a complete family of predicates that contains Iq1 and Iq2, and
hence implies MX1. It thus concludes the proof of mutual exclusion.

Almost all these invariants are (almost) equal to invariants used in [3]. The arguments used in the
proofs are also very similar.

We also have the proof obligation that all pointers are in local when referred to. This is indeed
captured in the invariants Kq4, Lq4, Lq7, Mq2, Mq3, Mq4.



whh596B – 7

2.3 No deadlock states

A thread is said to be competing if it is not at line 11. A state is called a deadlock state if there are
competing threads, and none of them can do a step, i.e. execute a command. As the algorithm has no
internal loops, deadlock-freedom is equivalent to the absence of deadlock states.

The proof of deadlock freedom needs two invariants with an existential quantification:

ExM: low < high ⇒ ∃ q : q ∈M ,
Nq1: q ∈ [15, 24] ∧ next(myq) = ⊥ ∧ tail 6= myq

⇒ ∃ r : r ∈ [15] ∪ [18] ∧ myq = prevr .

Before proving these invariants, they are applied to prove absence of deadlock.

Theorem 1 Assume there are competing threads. Then some competing thread can do a step.

Proof. Every thread that is not at an await statement can do the step of its line number. We may
therefore assume that every competing thread is at an await statement, i.e., at one of the lines 16, 19,
23. As there are competing threads, there is a thread at one of the lines 16, 19, 23. By Iq3 and Kq6,
it follows that low < high. The invariant ExM therefore gives the existence of some thread q ∈ M .
Therefore thread q is at one of the lines 16, 19, 23. If q is at line 16 or 19, the definition of M implies
that thread q can do the corresponding step. Therefore thread q is at line 23. If next(myq) 6= ⊥, thread
q can do the corresponding step. Otherwise, by Mq6 and Nq1, there is a thread at line 15 or line 18.
This contradicts the above assumption. 2

In order to prove the invariants ExM and Nq1, one first observes that predicate ExM is logically
implied by the predicates Iq4 and

Nq2: flag ∨ ∃ q : (q ∈ [19] ∧ ¬ locked(myq)) ∨ q ∈ [20, 29] ,
Nq3: flag ∧ tail 6= ⊥ ⇒ ∃ q : (q ∈ [15] ∧ prevq = ⊥) ∨ q ∈ [16, 17] .

The invariant Nq3 is the main difference between MCSHLi and MCSH: combined with some other
invariants, it implies that the flag only holds when the queue is empty or has its head in [15, 17]. In
MCSH, the flag holds more often.

The set local of the meaningful pointers satisfies the inductive invariant

Nq4: u ∈ local ⇒ u = ⊥ ∨ (∃ q : u = myq ∧ q ∈ [12, 26]) .

This invariant is used to derive the following existential version of Iq8:

Iq8E: q ∈ [21, 29] ∧ nxmyq 6= ⊥
⇒ ∃ r ∈ [19] : nxmyq = myr ∧ slotr = low + 1 .

Indeed, the combination of Kq4 and Nq4 gives a thread r ∈ [12, 26] with nxmyq = myr. Then one
applies MX1, Iq2, Iq8, and Jq4.

After this preparation, the invariants Nq1, Nq2, Nq3 can be proved. Predicate Nq1 is threatened
only by the steps 12 and 22. In both cases, Lq1 serves as a remedy.

Predicate Nq2 is threatened only by the steps 13 and 29. At step 13, it has the remedy Lq1. At step
29, it has the remedies MX1, Iq7, and Iq8E.

Predicate Nq3 is threatened only by step 29. It has the remedies Iq7 and

Nq5: q ∈ [25, 29] ∧ nxmyq = ⊥ ∧ tail 6= ⊥
⇒ ∃ r : r ∈ F ∧ slotr = low + 1 .

Predicate Nq5 is threatened only by the steps 14, 16, 21, 24, and 29. It has the respective remedies
Jq3, Jq1, Iq7, Nq6, MX1, where

Nq6: q ∈ [24] ⇒ next(myq) 6= ⊥ .

Predicate Nq6 is threatened only by step 12. It has the remedy Lq1. This completes the proof of the
invariants ExM and Nq1, and thus the proof of deadlock freedom.



whh596B – 8

References

[1] W. H. Hesselink. Verification of hardware locks.
http://wimhesselink.nl/mechver/HardwareLocks, 2021.

[2] W. H. Hesselink. Trylock, a case for temporal logic and eternity variables. Science of Computer
Programming, 216(102767), 2022.

[3] W. H. Hesselink and P. A. Buhr. MCSH, a lock with the standard interface. ACM Transactions on
Parallel Computing, 10:1–23, 2023.

[4] W. H. Hesselink, P. A. Buhr, and Ting-Ching Li. MCSHLi, modified MCSH lock with the standard
interface. In preparation, 2023.

[5] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS Version 7.1, System Guide,
Prover Guide, PVS Language Reference, 2020. http://pvs.csl.sri.com, accessed 1 Dec. 2021.


