

Mechanical verification of

a mutual exclusion algorithm
with nonatomic variables

Wim H. Hesselink

Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen
The Netherlands

IPA, de Koningshof, 1 November 2010

Sources

Wim H. Hesselink
Email: w.h.hesselink@rug.nl
www.cs.rug.nl/~wim

L. Lamport: A new solution of Dijkstra’s concurrent programming problem.
Commun. ACM, 17: 453–455, 1974.

E.A. Lycklama and V. Hadzilacos: A first-come-first-served mutual-exclusion
algorithm with small communication variables.
ACM TOPLAS 13: 558–576, 1991.

A.A. Aravind and W.H. Hesselink: A nonatomic dual bakery algorithm with
bounded tokens. Submitted.

For the proof assistant PVS see: http://pvs.csl.sri.com

IPA, de Koningshof, 1 November 2010 1 of 26

Overview

Mutual exclusion

Nonatomic variables (safeness)

Modelling MX and FCFS

Lamport’s Bakery Algorithm

Proof obligations

PVS modelling

Invariants (modelled in PVS)

No deadlock, and FCFS

Use of proof assistants

Questions?

IPA, de Koningshof, 1 November 2010 2 of 26

Mutual exclusion

I think, this is well known.

A number (N) of threads or processes (or processors)

need to communicate by shared variables

to obtain exclusive access to some shared resource.

Basic method: (busy) waiting for condition C to hold:

await C ≡ while ¬C do skip od .

IPA, de Koningshof, 1 November 2010 3 of 26

Nonatomic variables

A shared variable x is called atomic
iff the variable behaves logically as if
readings and writings are always interleaved
in some order that refines the temporal order.

A shared variable x is called safe (nonatomic)

iff, under the assumption that
it is never written by more than one thread,

any thread reading while no thread is writing
obtains the latest written value

and any thread reading while some thread is writing
obtains an arbitrary value.

IPA, de Koningshof, 1 November 2010 4 of 26

Modelling safeness

Reading a safe variable x into a private variable v
can be regarded as atomic (it never interferes).

Written v := x.

Writing a private expression E into a safe shared variable x:

` : x := (flickering) E .

is modelled as a nondeterministic choice:

` : (x := arbitrary ; goto `
[] x := E)

Therefore, repeated attempts to write E that eventually succeed.

IPA, de Koningshof, 1 November 2010 5 of 26

Modelling MX and FCFS

thread (p : 0 ≤ p < N) :
while true do

NCS ;
Doorway ;
Waiting ;
CS ;
Exit ;

od.

NCS and CS are given.

To design Doorway , Waiting , and Exit such that

MX: never more than 1 thread in CS .

Doorway and Exit are waitfree.

FCFS: if p has passed Doorway when q enters Doorway ,
then p enters CS before q.

IPA, de Koningshof, 1 November 2010 6 of 26

Lamport’s Bakery

When entering the bakery, you get a number
higher than the maximum number present.

When your number is the lowest number present,
it is your turn.

When you leave, reset your number.

Safe shared variables
bool act[N] := {false, . . . , false} ;
int num[N] := {0, . . . , 0} .

Thread p only writes act[p] en num[p].

IPA, de Koningshof, 1 November 2010 7 of 26

Lamport’s Bakery Algorithm

thread (p) {
int j, level ;
while (true) {

NCS ;
act[p] := (flickering) true ; level := 0 ;
for (j := 0 ; j < N ; j++) level := max(level , num[j]) ;
num[p] := (flickering) level + 1 ;
act[p] := (flickering) false ;
for (j := 0 ; j < N ; j++) {

await ¬ act[j] ;
await num[j] ≤ 0 ∨ num[p] ·N + p ≤ num[j] ·N + j ;

}
CS ;
num[p] := (flickering) 0 ;

}
}

IPA, de Koningshof, 1 November 2010 8 of 26

Bakery, the rough argument

In general, the thread q with the lowest value num[q]
gets priority in second loop.

When threads obtain the same numbers in the first loop,
priority is determined by their thread identifiers.

In the second loop, thread p first waits for thread j.p to complete its Doorway
before comparing the numbers.

IPA, de Koningshof, 1 November 2010 9 of 26

Bakery, remarks

The order of traversing the two loops does not matter:

We use private variables set1 , set2 , and set3
to hold the sets of thread numbers
that have yet to be treated in the loops.

The numbers num[p] are unbounded integers
and can get arbitrarly large.

In second loop, Lamport has the first conjunct num[p] = 0.

He uses the lexical order on pairs (num[p], p).

IPA, de Koningshof, 1 November 2010 10 of 26

Proof obligations

Mutual exclusion: (MX) q at CS ∧ r at CS ⇒ q = r .

No deadlock

FCFS: first-come-first-served

FCFS: use a shared ghost variable predec;
predec[q] holds the threads that thread q must gives priority to.

FCFS: q at CS ⇒ predec[q] = ∅ .

At 11: predec[p] := {q | q in [15 . . . 17]} .

At 17: 〈 for all q do remove p from predec[q] od 〉 .

IPA, de Koningshof, 1 November 2010 11 of 26

Code extended

thread(p) :
10: NCS ; predec[p] := {q | q in [15 . . . 17]} ;
11: act[p] := (flickering) true ; level := 0 ; set1 := Thread \ {p} ;
12: while nonempty(set1) do

extract some j from set1 ;
level := max(level , num[j]) od ;

13: num[p] := (flickering) level + 1 ;
14: act[p] := (flickering) false ; set2 := set3 := Thread \ {p} ;
15: while nonempty(set3) do

choose some j ∈ set3 ;
16: if j ∈ set2 then await ¬ act[j] ; remove j from set2

else await num[j] ≤ 0 ∨ num[p] ·N + p ≤ num[j] ·N + j ;
remove j from set3

fi
od ;

17: CS ; 〈 for all q do remove p from predec[q] od 〉 ;
18: num[p] := (flickering) 0 ; cnt++ ; goto 10 .
One access of a shared variable per transition

IPA, de Koningshof, 1 November 2010 12 of 26

Moreover

Initialization:

∀ q : q at 10 ∧ ¬ act[q] ∧ num[q] = 0 ∧ predec[q] = ∅ .

Fault tolerance.
Thread p can do at any time:

〈 act[p] := false ;
for all q do remove p from predec[q] od ;
goto 18 〉 .

IPA, de Koningshof, 1 November 2010 13 of 26

PVS modelling

state: TYPE = [#
num: [Process -> int],
act: pred[Process],
predec: [Process -> pred[Process]],
jj: [Process -> Process],
set1, set2, set3: [Process -> finite_set[Process]],
pc, lev, cnt: [Process -> nat]

#]

step12B(p, x, y): bool =
x‘pc(p) = 12 AND EXISTS q: x‘set1(p)(q) AND
y = x WITH [

‘set1(p) := remove(q, x‘set1(p)) ,
‘lev(p) := max(x‘lev(p), x‘num(q))

]

IPA, de Koningshof, 1 November 2010 14 of 26

PVS modelling continued

The total step relation becomes the union of about 14 step relations:
9 for the main steps,
2 for flickering of act and num,
2 jumps to the end of the loop,
and 1 for the fault step.

Construct an initial condition.

Invent and verify invariants.

IPA, de Koningshof, 1 November 2010 15 of 26

Main invariants for MX

Iq0: q in [15 . . . 17] ∧ r in [14 . . . 17]
⇒ r ∈ set3 .q ∨ num[q] ·N + q ≤ num[r] ·N + r

Iq1: q in [17 . . .] ⇒ set3 .q = ∅

From Iq0 and Iq1 for q, r, we get

q at 17 ∧ r at 17 ⇒ num[q] ·N + q = num[r] ·N + r .

This implies MX because 0 ≤ q, r < N .

Invariance van Iq1 is easy.

Invariance of Iq0 requires some other invariants.

Indeed, somehow, the Booleans act must play a role.

IPA, de Koningshof, 1 November 2010 16 of 26

Invariants in PVS

iq0(q, r, x): bool =
15 <= x‘pc(q) AND x‘pc(q) <= 17
AND 14 <= x‘pc(r) AND x‘pc(r) <= 17
IMPLIES x‘set3(q)(r) OR x‘num(q)*N + q <= x‘num(r)*N + r

Iq2: q in [15 . . . 17] ∧ r in [12 . . . 13]
⇒ r ∈ set3 .q ∨ q ∈ set1 .r ∨ num[q] ≤ level .r

Iq3: q in [13 . . .] ⇒ set1 .q = ∅

iq0_step_13: LEMMA
iq0(q, r, x) AND step13(p, x, y)
AND iq2(q, r, x) AND iq3(r, x)
IMPLIES iq0(q, r, y)

IPA, de Koningshof, 1 November 2010 17 of 26

Preservation of Iq0 continued

Preservation of Iq0 at line 16 follows from the obvious invariants

Iq4: q in [14 . . . 17] ⇒ num[q] > 0

Iq5: q in [. . . 12] ⇒ num[q] = 0

Nothing is said about num[q] at 13 or 18, because of flickering.

IPA, de Koningshof, 1 November 2010 18 of 26

Preservation of Iq2

Iq2: q in [15 . . . 17] ∧ r in [12 . . . 13]
⇒ r ∈ set3 .q ∨ q ∈ set1 .r ∨ num[q] ≤ level .r

iq2_step_rest: LEMMA
iq2(q, r, x) AND step(p, x, y)
IMPLIES iq2(q, r, y) OR step16(p, x, y)

Preservation of Iq2 at line 16 (removal of j from set3) follows from:

Iq6: q in [15 . . . 16] ∧ r in [12 . . . 13]
⇒ r ∈ set2 .q ∨ q ∈ set1 .r ∨ num[q] ≤ level .r .

Preservation of Iq6 at line 16 follows from the obvious invariant

Iq7: q in [12 . . . 13] ⇒ act[q] .

IPA, de Koningshof, 1 November 2010 19 of 26

No deadlock

Here, we also need the easy invariants

Iq8: q in [10 . . . 18] ,
Iq9: act[q] ⇒ q in [11 . . . 14] .

Then define iqall(x) to be the conjunction of the universal quantification
of the predicates Iq0 up to Iq9 .

no_deadlock: LEMMA
iqall(x) IMPLIES (FORALL p: x‘pc(p) = 10)
OR EXISTS p, y: forwardstep(p, x, y)

The proof required much work, because I had to instantiate
the new state y for all different cases.

The argument is also nontrivial.

IPA, de Koningshof, 1 November 2010 20 of 26

FCFS

FCFS: q at 17 ⇒ predec[q] = ∅

follows logically from Iq1 (q at 17 ⇒ set3 .q = ∅)
and the new invariant

Kq0: q in [15 . . . 17] ⇒ predec[q] ⊆ set3 .q .

Preservation of Kq0 at 14 and 16 from

Kq1: q /∈ predec[q] ,
Kq2: r ∈ predec[q] ⇒ r in [15 . . . 17] ,
Kq3: q in [14 . . . 17] ∧ r ∈ predec[q] ⇒ num[r] < num[q] .

Preservation of Kq3 at 13 and 18 from Iq4 , Kq2 , and

Kq4: q in [12 . . . 13] ∧ r ∈ predec[q] ⇒ r ∈ set1 .q ∨ num[r] ≤ level .q .

Preservation of Kq4 at the flickering lines 13 and 18 uses Kq2 .

IPA, de Koningshof, 1 November 2010 21 of 26

Progress

Progress is more than absence of deadlock.

E.g. the loops need to terminate.

Every thread q gets a private ghost variable cnt.q,
incremented with 1 in line 18.

vf .q = A · cnt.q + pc.q
+ (q in [12 . . .] ? N −#set1 .q : 0)
+ (q in [15 . . .] ? 2 · (2 ·N −#set2 .q −#set3 .q) : 0) .

If A ≥ 5 ·N + 9, then vf .q never decreases,
and it increases with every forward step of q.

Moreover A · cnt.q ≤ vf .q ≤ A · cnt.q + 5 ·N + 18.

Therefore, if q does ∞ forward steps, then ∞ CS or ∞ Faults.

IPA, de Koningshof, 1 November 2010 22 of 26

Liveness

Theorem 1. Under assumption of weak fairness and boundedly many faults, every
thread is always eventually at NCS.

This is expressed by the temporal formula:

Ex ∩WFa ∩ BFa ⊆ 23[[q at 10]] .

liveness: THEOREM
execution(xs) AND weakly_fair(xs) AND jumping
AND bounded_faults(xs)
IMPLIES box(diamond(sem1(idle(q))))(xs)

jumping : A ≥ 5 ·N + 9

IPA, de Koningshof, 1 November 2010 23 of 26

Available proof assistants

NQTHM and ACL2 (the Boyer-Moore provers)

PVS

HOL

Isabelle

Coq

etc. (Ask Freek Wiedijk, RU)

IPA, de Koningshof, 1 November 2010 24 of 26

Interactive use of a proof assistant

To verify validity of all proof steps

It can do some very easy proofs by itself

No intelligence: it gives no direction for the proof

It can be used to derive proof obligations

and for proof administration

PVS gives the current proof tree

Use requires insight in the logic of your problem

IPA, de Koningshof, 1 November 2010 25 of 26

Questions

?
IPA, de Koningshof, 1 November 2010 25 of 26

		Sources

		Overview

		Mutual exclusion

		Nonatomic variables

		Modelling safeness

		Modelling MX and FCFS

		Lamport's Bakery

		Lamport's Bakery Algorithm

		Bakery, the rough argument

		Bakery, remarks

		Proof obligations

		Code extended

		Moreover

		PVS modelling

		PVS modelling continued

		Main invariants for MX

		Invariants in PVS

		Preservation of Iq0 continued

		Preservation of Iq2

		No deadlock

		FCFS

		Progress

		Liveness

		Available proof assistants

		Interactive use of a proof assistant

		Questions

