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Mutual exclusion


I think, this is well known.


A number (N) of threads or processes (or processors)


need to communicate by shared variables


to obtain exclusive access to some shared resource.


Basic method: (busy) waiting for condition C to hold:


await C ≡ while ¬C do skip od .
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Nonatomic variables


A shared variable x is called atomic
iff the variable behaves logically as if
readings and writings are always interleaved
in some order that refines the temporal order.


A shared variable x is called safe (nonatomic)


iff, under the assumption that
it is never written by more than one thread,


any thread reading while no thread is writing
obtains the latest written value


and any thread reading while some thread is writing
obtains an arbitrary value.
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Modelling safeness


Reading a safe variable x into a private variable v
can be regarded as atomic (it never interferes).


Written v := x.


Writing a private expression E into a safe shared variable x:


` : x := (flickering) E .


is modelled as a nondeterministic choice:


` : ( x := arbitrary ; goto `
[] x := E )


Therefore, repeated attempts to write E that eventually succeed.
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Modelling MX and FCFS


thread (p : 0 ≤ p < N) :
while true do


NCS ;
Doorway ;
Waiting ;
CS ;
Exit ;


od.


NCS and CS are given.


To design Doorway , Waiting , and Exit such that


MX: never more than 1 thread in CS .


Doorway and Exit are waitfree.


FCFS: if p has passed Doorway when q enters Doorway ,
then p enters CS before q.
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Lamport’s Bakery


When entering the bakery, you get a number
higher than the maximum number present.


When your number is the lowest number present,
it is your turn.


When you leave, reset your number.


Safe shared variables
bool act[N ] := {false, . . . , false} ;
int num[N ] := {0, . . . , 0} .


Thread p only writes act[p] en num[p].
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Lamport’s Bakery Algorithm


thread (p) {
int j, level ;
while (true) {


NCS ;
act[p] := (flickering) true ; level := 0 ;
for (j := 0 ; j < N ; j++) level := max(level , num[j]) ;
num[p] := (flickering) level + 1 ;
act[p] := (flickering) false ;
for (j := 0 ; j < N ; j++) {


await ¬ act[j] ;
await num[j] ≤ 0 ∨ num[p] ·N + p ≤ num[j] ·N + j ;


}
CS ;
num[p] := (flickering) 0 ;


}
}
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Bakery, the rough argument


In general, the thread q with the lowest value num[q]
gets priority in second loop.


When threads obtain the same numbers in the first loop,
priority is determined by their thread identifiers.


In the second loop, thread p first waits for thread j.p to complete its Doorway
before comparing the numbers.
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Bakery, remarks


The order of traversing the two loops does not matter:


We use private variables set1 , set2 , and set3
to hold the sets of thread numbers
that have yet to be treated in the loops.


The numbers num[p] are unbounded integers
and can get arbitrarly large.


In second loop, Lamport has the first conjunct num[p] = 0.


He uses the lexical order on pairs (num[p], p).
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Proof obligations


Mutual exclusion: (MX ) q at CS ∧ r at CS ⇒ q = r .


No deadlock


FCFS: first-come-first-served


FCFS: use a shared ghost variable predec;
predec[q] holds the threads that thread q must gives priority to.


FCFS: q at CS ⇒ predec[q] = ∅ .


At 11: predec[p] := {q | q in [15 . . . 17]} .


At 17: 〈 for all q do remove p from predec[q] od 〉 .
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Code extended


thread(p) :
10: NCS ; predec[p] := {q | q in [15 . . . 17]} ;
11: act[p] := (flickering) true ; level := 0 ; set1 := Thread \ {p} ;
12: while nonempty(set1) do


extract some j from set1 ;
level := max(level , num[j]) od ;


13: num[p] := (flickering) level + 1 ;
14: act[p] := (flickering) false ; set2 := set3 := Thread \ {p} ;
15: while nonempty(set3) do


choose some j ∈ set3 ;
16: if j ∈ set2 then await ¬ act[j] ; remove j from set2


else await num[j] ≤ 0 ∨ num[p] ·N + p ≤ num[j] ·N + j ;
remove j from set3


fi
od ;


17: CS ; 〈 for all q do remove p from predec[q] od 〉 ;
18: num[p] := (flickering) 0 ; cnt++ ; goto 10 .
One access of a shared variable per transition
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Moreover


Initialization:


∀ q : q at 10 ∧ ¬ act[q] ∧ num[q] = 0 ∧ predec[q] = ∅ .


Fault tolerance.
Thread p can do at any time:


〈 act[p] := false ;
for all q do remove p from predec[q] od ;
goto 18 〉 .
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PVS modelling


state: TYPE = [#
num: [Process -> int],
act: pred[Process],
predec: [Process -> pred[Process]],
jj: [Process -> Process],
set1, set2, set3: [Process -> finite_set[Process]],
pc, lev, cnt: [Process -> nat]


#]


step12B(p, x, y): bool =
x‘pc(p) = 12 AND EXISTS q: x‘set1(p)(q) AND
y = x WITH [


‘set1(p) := remove(q, x‘set1(p)) ,
‘lev(p) := max(x‘lev(p), x‘num(q))


]


IPA, de Koningshof, 1 November 2010 14 of 26







PVS modelling continued


The total step relation becomes the union of about 14 step relations:
9 for the main steps,
2 for flickering of act and num,
2 jumps to the end of the loop,
and 1 for the fault step.


Construct an initial condition.


Invent and verify invariants.
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Main invariants for MX


Iq0: q in [15 . . . 17] ∧ r in [14 . . . 17]
⇒ r ∈ set3 .q ∨ num[q] ·N + q ≤ num[r] ·N + r


Iq1: q in [17 . . . ] ⇒ set3 .q = ∅


From Iq0 and Iq1 for q, r, we get


q at 17 ∧ r at 17 ⇒ num[q] ·N + q = num[r] ·N + r .


This implies MX because 0 ≤ q, r < N .


Invariance van Iq1 is easy.


Invariance of Iq0 requires some other invariants.


Indeed, somehow, the Booleans act must play a role.
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Invariants in PVS


iq0(q, r, x): bool =
15 <= x‘pc(q) AND x‘pc(q) <= 17
AND 14 <= x‘pc(r) AND x‘pc(r) <= 17
IMPLIES x‘set3(q)(r) OR x‘num(q)*N + q <= x‘num(r)*N + r


Iq2: q in [15 . . . 17] ∧ r in [12 . . . 13]
⇒ r ∈ set3 .q ∨ q ∈ set1 .r ∨ num[q] ≤ level .r


Iq3: q in [13 . . . ] ⇒ set1 .q = ∅


iq0_step_13: LEMMA
iq0(q, r, x) AND step13(p, x, y)
AND iq2(q, r, x) AND iq3(r, x)
IMPLIES iq0(q, r, y)
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Preservation of Iq0 continued


Preservation of Iq0 at line 16 follows from the obvious invariants


Iq4: q in [14 . . . 17] ⇒ num[q] > 0


Iq5: q in [. . . 12] ⇒ num[q] = 0


Nothing is said about num[q] at 13 or 18, because of flickering.
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Preservation of Iq2


Iq2: q in [15 . . . 17] ∧ r in [12 . . . 13]
⇒ r ∈ set3 .q ∨ q ∈ set1 .r ∨ num[q] ≤ level .r


iq2_step_rest: LEMMA
iq2(q, r, x) AND step(p, x, y)
IMPLIES iq2(q, r, y) OR step16(p, x, y)


Preservation of Iq2 at line 16 (removal of j from set3) follows from:


Iq6: q in [15 . . . 16] ∧ r in [12 . . . 13]
⇒ r ∈ set2 .q ∨ q ∈ set1 .r ∨ num[q] ≤ level .r .


Preservation of Iq6 at line 16 follows from the obvious invariant


Iq7: q in [12 . . . 13] ⇒ act[q] .
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No deadlock


Here, we also need the easy invariants


Iq8: q in [10 . . . 18] ,
Iq9: act[q] ⇒ q in [11 . . . 14] .


Then define iqall(x) to be the conjunction of the universal quantification
of the predicates Iq0 up to Iq9 .


no_deadlock: LEMMA
iqall(x) IMPLIES (FORALL p: x‘pc(p) = 10)
OR EXISTS p, y: forwardstep(p, x, y)


The proof required much work, because I had to instantiate
the new state y for all different cases.


The argument is also nontrivial.
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FCFS


FCFS: q at 17 ⇒ predec[q] = ∅


follows logically from Iq1 (q at 17 ⇒ set3 .q = ∅)
and the new invariant


Kq0: q in [15 . . . 17] ⇒ predec[q] ⊆ set3 .q .


Preservation of Kq0 at 14 and 16 from


Kq1: q /∈ predec[q] ,
Kq2: r ∈ predec[q] ⇒ r in [15 . . . 17] ,
Kq3: q in [14 . . . 17] ∧ r ∈ predec[q] ⇒ num[r] < num[q] .


Preservation of Kq3 at 13 and 18 from Iq4 , Kq2 , and


Kq4: q in [12 . . . 13] ∧ r ∈ predec[q] ⇒ r ∈ set1 .q ∨ num[r] ≤ level .q .


Preservation of Kq4 at the flickering lines 13 and 18 uses Kq2 .
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Progress


Progress is more than absence of deadlock.


E.g. the loops need to terminate.


Every thread q gets a private ghost variable cnt.q,
incremented with 1 in line 18.


vf .q = A · cnt.q + pc.q
+ (q in [12 . . . ] ? N −#set1 .q : 0)
+ (q in [15 . . . ] ? 2 · (2 ·N −#set2 .q −#set3 .q) : 0) .


If A ≥ 5 ·N + 9, then vf .q never decreases,
and it increases with every forward step of q.


Moreover A · cnt.q ≤ vf .q ≤ A · cnt.q + 5 ·N + 18.


Therefore, if q does ∞ forward steps, then ∞ CS or ∞ Faults.


IPA, de Koningshof, 1 November 2010 22 of 26







Liveness


Theorem 1. Under assumption of weak fairness and boundedly many faults, every
thread is always eventually at NCS.


This is expressed by the temporal formula:


Ex ∩WFa ∩ BFa ⊆ 23[[ q at 10 ]] .


liveness: THEOREM
execution(xs) AND weakly_fair(xs) AND jumping
AND bounded_faults(xs)
IMPLIES box(diamond(sem1(idle(q))))(xs)


jumping : A ≥ 5 ·N + 9
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Available proof assistants


NQTHM and ACL2 (the Boyer-Moore provers)


PVS


HOL


Isabelle


Coq


etc. (Ask Freek Wiedijk, RU)
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Interactive use of a proof assistant


To verify validity of all proof steps


It can do some very easy proofs by itself


No intelligence: it gives no direction for the proof


It can be used to derive proof obligations


and for proof administration


PVS gives the current proof tree


Use requires insight in the logic of your problem
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Questions


?
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