
Four barrier algorithms verified

Wim H. Hesselink, whh598

September 24, 2023

Abstract

Keywords: concurrency, barrier

1 Introduction

Barrier synchronization is a classical synchronization task in concurrency, see, e.g., [1, 3.4], [2].
When a task is distributed over several threads, it is often the case that, at certain points in the

computation, the threads must wait for all other threads before they can proceed with the next part of
the computation. This is called barrier synchronization. We model the problem by letting each thread
execute the infinite loop

(0) loop of thread p is
NCS(p) ;
Barrier(p)

end loop .

Here, NCS stands for a terminating noncritical section, a program fragment that eventually always
terminates, but that in all other aspects is irrelevant for the problem at hand.

The threads may only pass the barrier when all of them have completed the last NCS. On the other
hand, when all of them have completed the last NCS, they all must pass the barrier and start the next
NCS.

In this paper four barriers are discussed. First, a symmetric barrier, i.e., a barrier in which all threads
are treated in the same way. This barrier was published first by Lamport in [3, Fig. 7]. Its performance
is better than one might expect.

Second, a FAI barrier. Here FAI stands for the “hardware instruction” fetch-and-increment. This one
seems to have the best performance.

Third, a ring barrier. This solution is not symmetric, but every thread has the same amount of work
and waiting to perform. Each thread waits two times in every call of the barrier. The idea may be
elegant, but the performance is bad.

Fourth, a tree barrier. Here the root of the tree has a special responsibility. Yet the total amount
of waiting is roughly the same as in the ring barrier. One may expect better performance than the ring
barrier, but this depends on the shape of the tree (and the ordering of the children).

1.1 Formalization

To formalize the concept of barrier, assume each thread p counts the barriers that it has executed by a
private ghost variable cntp which is initially 0 and is incremented in every call of barrier(p) by one.

The barrier is now specified by the requirement that a thread that runs ahead with cnt, must not
execute NCS but wait. This is expressed in the barrier condition that, for all threads q and r,

BC : q in NCS ⇒ cntq ≤ cntr .

1

whh598 – 2

Justification: condition BC prohibits any thread q to enter a new NCS unless the other threads r have
exited the old NCS and reached the barrier. Conversely, every barrier in the informal sense satisfies the
barrier condition. This is shown by defining cntp as the number of times thread p has entered its barrier.
Then BC is an invariant of the system, because it can only be invalidated by thread q when it exits the
barrier with cntr < cntq. Then q has called the barrier more often than r. Therefore, q needs to wait for
r to reach the barrier.

Note that cnt is a ghost variable that can be incremented anywhere in the barrier, possibly in an atomic
command that modifies a shared variable. As suggested by the above analysis, the natural location for
the incrementation of cntp is at the start of Barrier(p). Yet, in all four correctness proofs of barriers
below, it is more convenient to combine this incrementation with one of the critical assignments of the
algorithm.

There is of course also a progress requirement: when each thread has terminated its NCS, then
eventually all threads pass the barrier.

1.2 Testing safety of a barrier

The safety of a barrier implementation can be tested by declaring a new shared integer array test[],
initially all zeros, and including at the end of NCS(p) a testing procedure

testing(thread p) =
for each thread k do assert(test[p] ≤ test[k]) endfor ;
test[p] := test[p] + 1 .

Indeed, every barrier passes this test, i.e., never causes an assert failure. This is because test[q] = cntq
when q is in NCS, while cntr ≤ test[r] always holds.

On the other hand, if a potential barrier bar always passes this test, the combinations

test(p)++;bar(p)

satisfies the barrier condion when test is regarded as the ghost variable cnt. This shows that bar is a
barrier, provided it satisfies the progress requirement.

2 Some implementations of barriers

In all cases the system has N threads, numbered from 0 upto N − 1. Each thread p has a persistent
ghost variable cntp, which is initially 0. In all four cases, the proof of correctness consists of a proof of
the barrier condition BC by means of invariants, followed by a proof of absence of deadlock.

2.1 A symmetric implementation

Perhaps the simplest solution is to introduce a shared array tag such that tag[p] indicates the value of
the unbounded integer cntp. This solution was described by Lamport in [3, Fig. 7]. I had found this
solution around the year 2000, and had presented in a course on concurrent programming, that I gave in
the years 2001-2005. See Lamport’s Writings [4, nr. 164].

int tag[N] = ([N] 0) ;

In Barrier(p), the value of tag[p] is incremented with 1, modulo some constant R > 2. Then thread p
waits until all other threads have done the same incrementation.

Barrier(p) :
int old := tag[p] ;
tag[p] := (old + 1) mod R ;
cntp++ ;
for each thread kk do

await (tag[kk] 6= old)
endfor

end Barrier .

whh598 – 3

The for loop is written in such a way that each thread can read the numbers tag[k] in its own order.
Indeed, to avoid memory contention, it seems to be advantageous that the orders of inspection of the
threads differ. One can e.g. give each thread a fixed permutation of the thread identifiers to specify its
order of inspection.

To prove the correctness of this barrier, we include it in the loop (0) to get

loop of thread p is
11 NCS(p) ;
12 oldp := tag[p] ;

tag[p] := (oldp + 1) mod R ;
cntp++ ;
lisp := allthreads ;

13 while exists kkp ∈ lisp do
14 await (tag[kkp] 6= oldp) ;

remove kkp from lisp
endwhile ;

end loop .

Here the index p is attached to the local variables of thread p. Line numbers are introduced, starting
with 11 for the ease of using query-replace in the PVS proof script. The private variable pcp gives the
line number of the command that thread p has to execute next. The four assignments of line 12 can be
atomically combined because the share variable tag[p] is written only by thread p, and oldp, cntp, and
lisp are local variables of thread p.

The set lisp holds the threads for which thread p still has to inspect the tag. The local variable kkp

is used to hold the index thread p will be inspecting. In line 14, the removal can be atomically attached
to the waiting, because kkp and lisp are local variables of thread p.

The initial condition of the transition system is

∀ q : pcq = 11 ∧ cntq = 0 ∧ tag[q] = 0 .

As NCS is at line 11, the barrier condition BC is implied by the predicate

Iq1 : q ∈ [11, 12] ⇒ cntq ≤ cntr .

A complete family of invariant predicates is constructed to prove that Iq1 is invariant.
Predicate Iq1 is threatened only by step 13 when lisp is empty and thread p jumps to 11. It has the

remedy

Iq2 : q ∈ [13, 14] ⇒ r ∈ lisq ∨ cntq ≤ cntr .

Predicate Iq2 is threatened only by step 14. It has the remedy

Iq345 : q ∈ [13, 14] ∧ cntr < cntq ⇒ tag[r] = oldq .

Predicate Iq345 is logically implied by the three predicates

Iq3 : q ∈ [13, 14] ⇒ tag[q] = (oldq + 1) mod R ,
Iq4 : tag[q] = cntq mod R ,
Iq5 : cntq ≤ cntr + 1 .

This implication is proved as follows:

q ∈ [13, 14] ∧ cntr < cntq
⇒ {Iq5} q ∈ [13, 14] ∧ cntr + 1 = cntq
⇒ {Iq4} q ∈ [13, 14] ∧ (tag[r] + 1) mod R = tag[q]
⇒ {Iq3} (tag[r] + 1) mod R = (oldq + 1) mod R
⇒ {tag[q] < R ∧ oldq < R} tag[r] = oldq .

whh598 – 4

The predicates Iq3 and Iq4 are inductive. Predicate Iq5 is threatened only by step 12. It has Iq1
as remedy. This concludes the construction of a complete family of invariant predicates. Therefore the
algorithm datisfies the barrier condition BC .

We still have to prove liveness, that is absence of deadlock. Let a state be called a deadlock state iff
no thread can do a step. As the loop in the barrier is bounded by N , absence of deadlock states is enough
to infer deadlock freedom.

Theorem 1 Assume that R > 2. Then deadlock states are not reachable.

Proof. Assume that the state is in a reachable deadlock state. As the state is reachable, all invariants
are applicable. Every thread is in [11, 14]. Every thread in [11, 13] can do the step of its line number.
Therefore, all threads are at line 14. Let p be a thread with the smallest counter, i.e., with cntp ≤ cntq for
all threads q. As thread p is blocked at line 14, it satisfies tag[kkp] = oldp. Put r = kkp. The invariant
Iq3 then implies tag[p] = (tag[r] + 1) mod R.

On the other hand, by Iq5 and minimality of cntp, one has cntp ≤ cntr ≤ cntp + 1. It follows that
cntp = cntr or cntp + 1 = cntr. Finally, application of Iq4 on both p and r gives a contradiction with
R > 2. 2

This symmetric implementation has the disadvantage that all threads have to pass N (or N−1) await
statements.

2.2 Using fetch and increment

The next barrier is essentially the same as the sense-reversing centralized barrier of [5, Fig. 8]. It uses
the special atomic instruction fetch-and-increment that increments an integer variable and returns its
previous value. Here, the shared integer variable count is used to count the number of threads that have
arrived at the barrier. The threads at the barrier wait for a shared boolean sense.

int count := 0;

bool sense := true;

Barrier(p):

bool nef := not sense;

if fetch_and_increment(count, 1) = N - 1 then

count := 0;

sense := nef

else

await (sense = nef)

endif

In comparison with [5], here, the value of count is replaced by N − count, and the persistent private
variable local-sense is replaced by a local variable nef .

In compile-time, this barrier is just as symmetric as the barrier of Section 2.1: all threads are treated in
the same way. At at runtime, however, the symmetry is broken: there is a unique thread that increments
count to N and toggles the shared variable sense.

For the sake of the proof, two ghost variables are introduced. The ghost variable guests holds the
set of threads that are blocked at the final await statement. The ghost variable butler is introduced to
express that there is at most one thread in the then-branch of the conditional. If there is such a thread,
it is the butler; otherwise butler = N .

Transition system

ghost variables

butler: [0..N]

guests: set of thread

Loop of thread p:

whh598 – 5

11 NCS

12 nef_p := not sense;

13 temp := count;

count++; cnt_p++;

if temp < N - 1 then add p to guests

else butler := p endif;

if temp = N - 1 then

14 count := 0;

15 sense := nef_p;

butler := N ; guests := emptyset

else

16 await (sense = nef_p)

endif

endloop

The initial condition is

count = 0 ∧ butler = N ∧ guests = ∅
∧ ∀q : q ∈ [11] ∧ cntq = 0 .

The properties of the butler are expressed by the invariants

Iq1 : butler < N ⇒ butler ∈ [14, 15] ,
Iq2 : q ∈ [14, 15] ⇒ q = butler .

Predicate Iq1 is inductive. Predicate Iq2 is threatened only by step 13. It has the remedies

Iz1 : q ∈ [13] ⇒ count < N ,
Iq3 : butler < N ∧ q 6= butler ⇒ q ∈ [16] .

Predicate Iz1 is implied by Iq1, Iq3, and

Iq4 : butler = N ⇒ count = #guests ,
Iq5 : q ∈ guests ⇒ q ∈ [16] .

Predicate Iq3 is threatened only by the steps 13 and 16. At step 13, it has the remedies Iq5 and

Iz2 : q ∈ [13] ∧ count = N − 1 ⇒ {q} ∪ guests = allthreads .

This predicate is implied by Iq1, Iq3, Iq4, and Iq5. At step 16, the predicate Iq3 has the remedy

Iq6 : nef q = sense ⇒ butler = N .

Predicate Iq4 is threatened only by the steps 13, 14, and 15. At the steps 13 and 14, it has the
respective remedies Iq5 and Iq2. At step 15, it has the remedy

Iq7 : q ∈ [15] ⇒ count = 0 .

Predicate Iq5 is threatened only by step 16. It has the remedy

Iq8 : q ∈ guests ⇒ nef q 6= sense .

Predicate Iq6 is threatened only by step 13. It has the remedies Iq8 and

Iq9 : q ∈ [13] ⇒ nef q 6= sense .

Predicate Iq7 is threatened only by step 13. It has the remedies Iq2 and Iq3.
Predicate Iq8 is threatened only by step 13. It has the remedy Iq9.
Predicate Iq9 is threatened only by step 15. It has the remedies Iq2 and Iq3.
This concludes the proofs of the invariants Iq1 up to Iq9.
For the proof of the barrier condition, we need invariants about the variables cntq. The barrier

condition itself is generalized to

whh598 – 6

Jq1 : q ∈ [11, 13] ⇒ cntq ≤ cntr .

It is threatened only by steps 16 and 15, and has the respective remedies

Jq2 : q ∈ [16] ∧ nef q = sense ⇒ cntq ≤ cntr ,
Jq3 : q ∈ [14, 15] ⇒ cntr = cntq .

Predicate Jq2 is threatened only by the steps 13 and 15. At step 13 it has the remedy Iq9, at step
15 the remedy Jq3.

Predicate Jq3 is threatened only by step 13. At step 13 one uses the remedies Iq2 and Iq3 to handle
the case that the acting thread goes to line 16. If the acting thread goes to line 14 and r 6= q, then Iz2
implies that r ∈ guests. By Iq5 and Iq8, it follows that r is in line 16 and nef r 6= sense. Finally, one
uses the new predicate

Jq4 : q ∈ [11, 13] ∧ r ∈ [16] ∧ nef r 6= sense ⇒ cntq + 1 = cntr .

Predicate Jq4 is threatened only by the steps 13, 16, and 15. At step 13, it has the remedy Jq1. At
step 15, it has the remedies Iq2, Iq3, and Iq6. At step 16, it has the remedy

Jq5 : q ∈ [16] ∧ nef q = sense ∧ r ∈ [16] ∧ nef r 6= sense ⇒ cntq + 1 = cntr .

Predicate Jq5 is threatened only by the steps 13 and 15. At step 13, it has the remedies Iq9, Jq1, and
Jq2. At step 15, it has the remedies Iq2 and Iq6. This concludes the proof of the invariants Jq1 up to
Jq5, and thus of the barrier condition.

Two more invariants are needed for the proof of absence of deadlock.

Kq1 : q ∈ [16] ∧ nef q 6= sense ⇒ q ∈ guests ,
Kq2 : count < N ∨ (butler < N ∧ butler ∈ [14]) .

Predicate Kq1 is threatened only by steps 13 and 15. At step 13, it has the remedies Kq2 and Iq3, at
step 15 the remedies Iq2 and Iq6. Predicate Kq2 is threatened only by step 15. It has the remedy Iq2.

This concludes the proofs of Kq1 and Kq2. Note that Kq1 is the converse of Iq5 and Iq8. As for
Kq2, it is possible that all threads are at line 16, but then count < N and some threads are not in the
set guests. Now for the proof of deadlock freedom.

Theorem 2 Deadlock is not reachable in the FAI barrier.

Proof. Assume that deadlock has been reached. Then every thread q is blocked at line 16 with
nef q 6= sense. The invariant Kq1 then implies that all threads are in the set guests. This implies that
#guests = N . On the other hand, Iq1, Iq4, and Kq2 imply that butler = N and count = #guests

and count 6= N . This gives a contradiction. 2

2.3 The ring barrier

In the ring barrier, the threads are arranged in a directed ring. Every thread waits twice in the barrier.
Thread p waits only for the value of the boolean tog[p]. Initially, tog[p] = false for all p. The ring barrier
is almost symmetric, but thread 0 has a special role: it negates the Boolean value that is sent forward to
the next thread.

Barrier(thread p):

int next = (p+1 < N ? p+1 : 0) ;

bool nz = (p > 0) ; // nz: nonzero

await (tog[p] = nz) ;

tog[next] := true ; cnt_p++ ;

await (tog[p] != nz) ;

tog[next] := false

end Barrier

whh598 – 7

The algorithm is like a token ring, in which a message is sent around the ring twice, the first time
as a token, the second time as an acknowledgement. For the sake of the proof, we therefore introduce
a shared ghost variable loc to hold the location and the meaning of the message. The message is the
token iff loc < N , the location of the message is loc mod N . Initially loc = 0. It is updated in
the atomic commands that modify tog. The incrementation of cntp is combined atomically with the
first modification of tog. In this way, we arrive at the following transition system, where we regard the
constant local variables nzp and nextp as abbreviations.

Transition system

loop of thread p:

11 NCS ;

12 await (tog[p] = nz_p) ;

13 tog[next_p] := true ;

cnt_p++ ; loc++ ;

14 await (tog[p] != nz_p) ;

15 tog[next_p] := false ;

loc := (loc+1 < 2*N ? loc+1 : 0) ;

endloop

In line 13, the incrementations can be atomically combined with the assignment to tog because cntp and
loc are ghost variables. The same holds for line 15.

The initial condition is

loc = 0 ∧ ∀ q : pcq = 11 ∧ tog[q] = false ∧ cntq = 0 .

The relationship between the algorithm and the variable loc is captured in the four invariants

Iq1 : tog[q] = (nzp = (q ≤ loc < q + N)) ,
Iq2 : q ∈ [14, 15] ≡ (q < loc ≤ q + N) ,
Iq3 : q ∈ [13] ⇒ q = loc ,
Iq4 : q ∈ [15] ⇒ q + N = loc .

For Iq1, note that the equality operator (=) for booleans is associative (as emphasized by Dijkstra), i.e,
a = (b = c) is the same as (a = b) = c) for booleans a, b, c.

Predicate Iq1 is threatened only by the steps 13 and 15. It has the respective remedies Iq3 and Iq4.
The same holds for the predicate Iq2. Predicate Iq3 is threatened only by the steps 12, 13, and 15.
At step 12, it has the remedies Iq1 and Iq2. At 13 and 15, it has the remedies Iq3 and Iq4 as before.
Predicate Iq4 is threatened only by the steps 13, 14, and 15. At step 14, it has the remedies Iq1 and Iq2.
At 13 and 15, it has the remedies Iq3 and Iq4 as before. This concludes the proof of the invariants Iq1
up to Iq4.

An invariant about cnt is needed to prove the barrier condition BC . There is one thread that holds
the least value of cnt, and other threads may have the same value. This is postulated in the invariant

Iq5 : cntq = cntN−1 + (q < loc < N ? 1 : 0) .

It follows from Iq2 and Iq5 that

q ∈ [11, 13] ⇒ cntq = cntN−1 .

Therefore, again using Iq5, the barrier condition is implied.
Predicate Iq5 is threatened only by the steps 13 and 15. At these steps it has the respective remedies

Iq3 and Iq4.
Absence of deadlock means that the message can always be sent forward to the next thread in the

ring. The proof needs the additional invariant

Iq6 : loc < 2 ·N ,

which is proved by means of the remedy Iq3.

whh598 – 8

Theorem 3 In the ring barrier, deadlock is not reachable.

Proof. Assume the state is in deadlock. Then all threads are blocked, waiting in the lines 12 or 14. If
loc < N , the invariants Iq2 and Iq1 imply that thread q = loc is not at line 14, and hence at line 12,
and that tog[q] = nzq holds, so that q is enabled. On the other hand, if N ≤ loc < 2 · N , the same
invariants imply that thread q = loc −N is not at line 12, and hence at line 14, and that tog[q] 6= nzq
holds, so that q is enabled. 2

2.4 A new general tree barrier

The tree barriers of, e.g., [2, 5] work with a prescribed tree. Here, one can use an arbitrary rooted tree
with a one-to-one correspondence between the nodes and the threads. One thread is the root of the tree,
and every thread q is a node and therefore has a set of children children(q). The algorithm uses a shared
array aa of booleans, which are toggled twice in every call of the barrier. The boolean aa[root] of the
root is ignored. Every shared variable aa[q], q 6= root, is read and written only by thread q and its parent
in the tree.

bool aa[N] := ([N] false) ;

barrier(thread p):

(*) for all children kk of p do

await (aa[kk]) endfor ;

if p != root then

aa[p] := true ;

await (not aa[p]) ;

endif ;

(**) for all children kk of p do

aa[kk] := false endfor ;

The barrier works as follows. Each node q 6= root set its value aa[q] := true, when its children have
done so. As the leaves of the tree have no children, the process begins at the leaves, and ends with the
root. When the root observes that all its descendants have set aa, it spreads the message false over the
descendants. Upon reception of false, the descendants can proceed. Note that the same tree must be
used for collection and for the backward broadcast.

Four special cases are considered here.

Case A, the flat tree. All nonroot threads are leaves of the tree and children of the root. Loop (*)
can therefore be implemented by

(A) if p = root then

for all threads kk != root do

await (aa[kk]) endfor

endif

and similarly for loop (**)

Case B, the linear tree. Let the threads be 0, . . . , N − 1. The root is 0, thread N − 1 is the only leaf,
every thread q < N − 1 has single child q + 1. Loop (*) is implemented by

(B) if p < N-1 then

await (aa[p+1] != aa[p])

endif

It is not likely that this tree performs well.

Case C, the binary tree. Again 0, . . . , N−1 are the threads. Every thread q has at most two children,
viz. 2 ∗ q + 1 and 2 ∗ q + 2, provided these are less than N . Loop (*) is implemented by

whh598 – 9

(C) if 2*p + 2 < N then

await (aa[2*p+2] != aa[p]) endif ;

if 2*p + 1 < N then

await (aa[2*p+1] != aa[p]) endif ;

If the children of a node in the tree have different heights, the order of inspection in the loop over the
children matters for performance. It is best to begin with the children with the smallest height, because
they are likely to be the first to toggle aa. For this reason, in loop C the higher node is inspected first
This suggests that it is not necessarily optimal to use a balanced tree.

Case D. Indeed, the (unbalanced) tree of [2] may be quite adequate. In this case, the for loop (*)
over the children of p can be described by

(D) int pow := 1, pd := p;

while pd mod 2 = 0 and p + pow < N do

await (aa[p+pow] != aa[p]) ;

pow := 2 * pow ; pd := pd / 2 ;

endwhile

In this tree, the parent of a nonzero node q is determined as follows. As q > 0, there is a highest power
2d that divides q. Then thread q − 2d is the parent of q.

2.4.1 Correctness of the tree barrier

The greatest problem for correctness is that some threads can remain waiting for ¬ aa[p] while other
threads have executed loop (**) and loop (*), and have reached the waiting position for ¬ aa[p] again.
To distinguish the two cases, a shared set-valued ghost variable rear is introduced, which is set by the
root when it passes the conditional statement. For simplicity, the threads are represented by numbers 0
up to N − 1 in such a way that 0 is the root, and that q < r holds if q is the parent of r.

The transition system for the tree barrier

loop of thread p:

11 NCS ;

12 lis_p := children(p) ;

13 while exists kk_p in lis_p do

14 await (aa[kk_p]) ;

remove kk_p from lis_p

endwhile ;

15 if p != 0 then aa[p] := true

else rear := allthreads endif ;

cnt_p ++ ;

16 await (p = 0 or not aa[p]) ;

17 lis_p := children(p) ;

18 while exists k in lis_p do

aa[k] := false ; remove k from lis_p

endwhile ;

remove p from rear

end loop .

Note that the loop variables of the two loops are treated in a different way. In the loop at line 18, the
variable k need not be recorded in the state because one atomic statement can contain the choice of k,
the assignment aa[k] := false, and the removal of k from lisp. In the first loop, however, thread p has to
remember the chosen value kkp while it waits at location 14.

The initial condition is

Init : rear = ∅ ∧ ∀ q : pcq = 11 ∧ aa[q] = false ∧ cntq = 0 .

whh598 – 10

The discussion of the ghost variables rear and cntp is postponed. First some invariants concerning
array aa and the tree structure.

For nonroot nodes q, the setting of aa[q] in line 15 is followed by testing ¬ aa[q[in line 16. We therefore
have the invariant

Iq1 : q 6= 0 ∧ aa[q] ⇒ q ∈ [16] .

Indeed, predicate Iq1 is inductive.
There are two predicates about aa related to the tree:

Iq2 : q 6= 0 ∧ aa[q] ∧ r ∈ children(q) ⇒ aa[r] ,
Iq3 : q ∈ [15] ∧ r ∈ children(q) ⇒ aa[r] .

Predicate Iq2 is threatened only by the steps 15 and 18. It has the remedy Iq3 at line 15. At line 18, it
has the remedies Iq1 and

Iq4 : q ∈ [13, 18] ⇒ lisq ⊆ children(q) .

Predicate Iq3 is threatened only by the steps 13 and 18. It has the remedy Iq4 at step 18. At step
13, it has the remedy

Iq5 : q ∈ [13, 14] ∧ r ∈ children(q) ⇒ r ∈ lisq ∨ aa[r] .

Predicate Iq4 is inductive. Predicate Iq5 is threatened only by step 18. It has the remedy Iq4. The
invariants Iq1 up to Iq5 enable us the first global conclusion: if the root is at line 15, all other threads q
have aa[q], and are thus at line 16 because of Iq1.

Crit1 : 0 ∈ [15] ∧ q 6= 0 ⇒ aa[q] ∧ q ∈ [16] .

This is proved as follows. Assume that 0 ∈ [15]. Let q be the least number of a thread q 6= 0 with ¬ aa[q]
(if such exist). As q 6= 0, it has a parent p with p < q. Minimality of q implies that p = 0 or aa[p].
If p = 0, predicate Jq3 implies that aa[q] holds. Otherwise, Jq2 does this. In either case, this gives a
contradiction. Therefore such threads q do not exist. For the second conjunct, use Iq1.

The next invariant describes the relation between rear, the location of the thread and the value of
aa: every thread q is always in Bottom, Middle, or Top.

Iq6 : q ∈ Bottom ∨ q ∈ Middle ∨ q ∈ Top , where
q ∈ Bottom ≡ q 6= 0 ∧ q ∈ rear ∧ aa[q] ∧ q ∈ [16] ,
q ∈ Middle ≡ q ∈ [16, 18] ∧ q ∈ rear ∧ (q = 0 ∨ ¬ aa[q]) ,
q ∈ Top ≡ q ∈ [11, 16] ∧ q /∈ rear ∧ (q ∈ [16] ⇒ q 6= 0 ∧ aa[q]) .

A case distinction is used to prove this invariant. First, if q ∈ Bottom, any step of the algorithm keeps
q ∈ Bottom or transfers q to Middle. Similarly, if q ∈ Middle, any step of the algorithm keeps q ∈ Middle
or transfers q to Top. If q is in Top, any step of the algorithm, except step 15 of the root, keeps q in Top.
In the case of step 18, this is proved with the new invariant

Iq7 : q ∈ [18] ∧ r ∈ lisq ⇒ r ∈ Bottom .

If q ∈ Top, step 15 of root 0 transfers q to Bottom or Middle because of Crit1.
Before proceeding to prove Iq7, we first note that predicate Iq6 has the following easy consequences:

Iq6A : q ∈ [17, 18] ⇒ q ∈ rear ,
Iq6B : q ∈ rear ⇒ q ∈ [16, 18] ,
Iq6C : q 6= 0 ∧ q ∈ [16] ⇒ q ∈ rear ∨ aa[q] .

Predicate Iq7 is threatened only by the steps 17 and 18. At step 18, it has the remedy Iq4. At step
17, it has the remedies Iq6A and

Iq8 : q ∈ [16, 17] ∧ q ∈ rear ∧ r ∈ children(q) ⇒ r ∈ Bottom .

whh598 – 11

Predicate Iq8 is threatened only by the steps 15 and 18. At step 15, it has the remedies Iq6B and
Crit1. At step 18, it has the remedy Iq4. This concludes the formation and proof of the first batch of
invariants Iq* .

For the proof of the barrier condition, we postulate

Jq1 : cntq = cnt0 + (q ∈ [16] ∧ q /∈ rear ? 1 : 0) .

Indeed, this predicate clearly implies the barrier condition

BC : q ∈ [11] ⇒ cntq ≤ cntr .

Predicate Jq1 is threatened only by the steps 15 and 16. At step 16, it has the remedy Iq6C . At step
15, it has the remedies Crit1, Iq6B, and

Crit2 : 0 ∈ [15] ⇒ q /∈ rear .

In order to prove Crit2, one postulates the invariant

Jq2 : r ∈ children(q) ∧ aa[r] ∧ r ∈ rear ⇒ q ∈ rear .

Indeed, using Jq2, predicate Crit2 can be proved as follows. Assume 0 ∈ [15]. If there is a thread in
rear, there is a smallest one, say r. As 0 ∈ [15], predicate Iq6B implies that r 6= 0. Predicate Crit1
implies that aa[r] holds. Let q be the parent of r. Then Jq2 implies q ∈ rear. On the other hand, q < r
because q is the parent of r. This contradicts the minimality of r.

Predicate Jq2 is threatened only by the steps 15 and 18. At step 15, it has the remedy Iq6B. At step
18, it has the remedy

Jq3 : q ∈ [18] ∧ r ∈ children(q) ∧ aa[r] ∧ r ∈ rear ⇒ r ∈ lisq .

Predicate Jq3 is threatened only by step 15. It has the remedies Crit1 and Iq6B. This concludes the
proof of the barrier condition BC .

It remains to prove absence of deadlock. This is rather easy. Assume that all threads are blocked.
Then they are all waiting at one of the lines 14 and 16. Thread 0, the root, need not wait at line 16 and
is therefore waiting at line 14. Let q be the thread with the greatest number that is waiting at line 14.
As q is blocked at 14, it has ¬ aa[r] for thread r = kkq. Now, r is a child of q and therefore q < r. By
maximality of q, thread r is not waiting at line 14. Therefore r is waiting at line 16 and aa[r] holds. This
is a contradiction. This proves

Theorem 4 In the tree barrier, deadlock is not reachable.

References

[1] G.R. Andrews. Foundations of multithreaded, parallel, and distributed Programming. Addison Wesley,
Reading, etc., 2000.

[2] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier synchronization. International
Journal of Parallel Programming, 17:1–17, 1988.

[3] L. Lamport. Implementing dataflow with threads. Distributed Computing, 21:163–181, 2008. See also
Lamport’s Writings (nr. 164).

[4] L. Lamport. My writings.
http://research.microsoft.com/en-us/um/people/ lamport/pubs/pubs.html, 2010.

[5] J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Systems, 9:21–65, 1991.

