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Abstract

A partial barrier for size M is a synchronization mechanism for thread systems that allows threads
repeatedly to pass an entry point only in batches of precisely M elements. The paper presents the
design of a partial barrier, based on the hardware primitive fetch-and-increment. The correctness
of the design is proved by means of invariants and a refinement function towards a partial barrier
prototype.
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1 Introduction

In a system of N threads, a barrier is a synchronization mechanism to let the threads repeatedly pass
through the call of a barrier. When a thread arrives at the barrier, it has to wait for all threads to arrive
at the barrier. The threads can pass the barrier only when all have arrived.

A partial barrier for a number M is a variation of this idea. It only allows the threads to pass in
batches of M threads. All threads compete in a loop and repeatedly arrive at the “barrier”, which
selects a new batch of M threads from those that have arrived. When this batch has been launched and
subsequently all its members have been released, a new batch of M threads can be launched, as soon as
available.

In general, a partial barrier is not a barrier. It can serve as a barrier only if M is the total number
of threads. At the other extreme, the case of M = 1 is mutual exclusion, compare [2] and the references
given there. Indeed, the partial barrier looks like a special case of group mutual exclusion, see [1] and its
references.

To investigate its behavior, the partial barrier is put into its lifeline loop, just as with mutual exclusion.
Indeed, every thread is in an unbounded loop

(0) loop of thread p :
NCS ;
entry(p) ;
CS ;
release(p)

end loop .

Here NCS stands for the noncritical section, CS for the critical section, both are program fragments that
do not concern us. The partial barrier is the pair of functions entry , release. In the function entry , the
threads have to wait until a batch of M members has been formed and can be launched.

The aim of this paper is to construct a partial barrier and to verify its correctness. For the correctness
proof, a formal specification has to be developed first. Therefore Section 2 presents two partial barriers:
an abstract prototype and an implementation with fetch-and-increment instructions and atomic registers.
Section 3 contains the verification that the implementation refines the prototype and therefore satisfies
the specification. Section 4 draws conclusions.
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2 Two partial barriers

In Section 2.1, a simple state machine is constructed as a general prototype. Any system that refines
this machine is a partial barrier. Section 2.2 presents an implementation of a partial barrier constructed
with fetch-and-increment instructions.

2.1 A partial barrier formally specified

What are the requirements for partial barriers? It is clearly required that the number of threads in CS
must be ≤M . This, however, is not enough, because it would allow new threads to enter CS when part
of the previous batch have not yet been released.

The easiest way to specify a partial barrier is to require that its lifetime loop implements (i.e., simu-
lates) the following prototype, where W is the set of waiting threads and B is the batch.

shared variables :
W,B : set of thread ;

initially: W = B = ∅ .

loop of thread p :
1 NCS ;
2 add p to W ;
3 await p ∈ B ;
4 CS ;
5 remove p from B
end loop .

Here lines 2 and 3 represent entry , and line 5 represents release. Repeatedly, the sets W and B are
modified by an auxiliary thread, the butler:

loop of thread butler :
〈 if B = ∅ ∧ #W ≥M then

choose B ⊆W with #B = M ;
W := W \B ;

endif 〉
end loop .

Here the brackets 〈 〉 enclose a single atomic transition. For a finite set S, the expression #S denotes its
cardinality, its number of elements. So, the butler can act only if B is empty and at least M threads are
waiting, it then moves M threads from W to B.

2.2 An algorithm with fetch-and-increment

The following implementation of the partial barrier is proposed. The algorithm uses three shared integer
variables, and one integer local variable. For now, assume that the integers are unbounded. The hardware
instruction fetch-and-increment(x, n) reads the value of the shared variable x and assigns x := x + n
without interference.

int free = 0, high = 0, inCS = 0 .

entry(thread p) :
int ticket := fetch-and-increment(free,+1) ;
await(ticket ≤ high) ;
if ticket = high then

await(inCS = 0) ;
await(ticket + M ≤ free) ;
inCS := M ;
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high := ticket + M
endif

end

release(thread p) :
fetch-and-increment(inCS,−1)

end .

The algorithm needs three await statements, one to controle the size of the batch that is being selected,
one to decide that the previous batch has been released completely, and one to decide that enough threads
are available.

In Section 3.4, it is shown that the algorithm can be used with integers bounded by a constant MAX ,
provided the following requirements are met. The expression MAX + 1 gives the smallest integer MIN .
The number of active threads is less than MAX , and MIN < −M . The two inequalities x ≤ y in the
await statements have to be implemented (i.e., replaced) by 0 ≤ y − x.

2.3 The lifeline loop of the implementation

To prove the correctness of the algorithm of Section 2.2, it is put into the lifeline loop (0). For the sake
of the verification, an integer ghost variable low is introduced.

loop of thread p :
11 NCS ;
12 ticketp := free ; free := free + 1 ;
13 await (ticketp ≤ high) ;
14 if ticketp = high then
15 await (inCS = 0) ;
16 await (ticketp + M ≤ free) ;
17 inCS := M ;
18 high := ticketp + M ;

endif ;
19 skip ;
20 CS ;
21 inCS := inCS− 1 ; low := low + 1
end loop .

Line 19 contains a superfluous operation skip, a stuttering step, to help in the construction of a refinement
function. The initial condition of the lifeline loop is

free = high = inCS = low = 0 ∧ ∀ q : pcq = 11 .

3 The formal verification

Section 3.1 recalls the concepts of state machines, executions and invariants, as well as a method to
collect and prove invariants for a given state machine. Section 3.2 describes the prototype of Section 2.1
as a state machine. In Section 3.3, the state machine for the algorithm of Section 2.3 is described. The
method of Section 3.1 is used to collect and prove several invariants of the algorithm. Finally, Section
3.5 presents and proves a refinement from the algorithm to the prototype.

3.1 State machines

As we are interested only in safety properties, the state machines are kept simple, i.e., without liveness
properties. A state machine is therefore defined as a tuple K = (X,Y,N, obs) where X is a set, the state
space, Y ⊆ X is the initial condition, N is a reflexive relation on the state space, the next-state relation,
and obs is a function on X.



whh599 – 4

An execution of machine K is an infinite sequence x0, . . . of states such that x0 ∈ Y and (xi, xi+1) ∈ N
for every natural number i. It is observed via the observation sequence (obs(xi))i. By a predicate P , we
mean a boolean function on X, or equivalently the subset of X where P holds. Predicate P is said to be
invariant iff it contains every state of every execution.

A subrelation S ⊆ N is called a command. If S is a command and P and Q are predicates on X, the
so-called Hoare triple {P} S {Q} expresses that command S transforms every state in P into a state in
Q, formally x ∈ P ∧ (x, y) ∈ S ⇒ y ∈ Q.

We need a bit of theory about invariants from [3]. A predicate P is said to be preserved by command
S iff {P} S {P} holds. Predicate P is called stable if it is preserved by relation N . A predicate is called
inductive iff it is stable and holds initially. Every inductive predicate is an invariant. A predicate implied
by an inductive predicate is an invariant.

Predicate P is said to be threatened by a command S iff it is not preserved by S. If predicate P
is threatened by command S, a predicate Q is called a remedy for P and S iff {P ∧ Q} S {P} . Let C
be a set of commands such that N =

⋃
C. If one has a family of predicates such that any member of

the family that is threatened by a command in C, has some remedy that is a conjunction of members
of the family, then the conjunction of the family is stable. If moreover all members hold initially, the
conjunction is inductive, and each member of the family is an invariant. This is the method used below
to obtain and prove invariants.

3.2 The prototype as a state machine

Let Thread be the type of the threads, i.e., the thread identifiers. It can be a subset of the natural
numbers. The protoype of Section 2.1 is formalized as a machine K = (X,Y,N, obs) as follows. The
state space X is spanned by the variables W and B, both holding sets of threads, and the program
counters pc : Thread → N. The initial condition Y is given by

W = B = ∅ ∧ ∀ q ∈ Thread : pcq = 1 .

For every thread q, and every line number ` ∈ {1, 2, 3, 4, 5}, let N`,q be the relation that contains the
pairs (x, y) ∈ X2 such that state y is obtained from state x by executing the command of line ` of the
loop of thread q. For the cases ` ∈ {1, 3, 4}, the command only increments the value of pcq. Line 3 is
executed only if q ∈ B. Let N` be the union of the sets N`,q for all threads q. Let N0 be the set of the
pairs (x, y) such that state y is obtained from state x by execution of the Butler thread. The next state
relation N is the union N = 1 ∪ N0 ∪

⋃
` N`, where 1 is the identity relation, the set of all pairs (x, x)

with x ∈ X.
Finally, it is observable which threads are in NCS or CS. As 1 and 4 are the locations of NCS and

CS, respectively, the observation function obs : X → (Thread → N) is given by

obs(x)(q) = (x.pcq = 1 ? 1 : x.pcq = 4 ? 2 : 0) .

Here, pc is treated as a field of state x.

3.3 The implementation as a state machine

The algorithm of Section 2.3 is formalized in the state machine K ′ = (X ′, Y ′, N ′, obs′). The state space
X ′ is spanned by the shared variables free, high, inCS, the shared ghost variable low, and the private
and local variables pcq and ticketq for all threads q. Just as with the prototype of Section 3.2, the step
relation N ′ is built in terms of the steps of the threads at the lines ` of (2.3). The step of thread q at line
` is represented by the relation N ′

`,q. The steps at line ` for all threads q together are represented by the
union N ′

` =
⋃

q N
′
`,q. The step relation is itself N ′ = 1 ∪

⋃
` N

′
` where ` ranges from 11 to 21. As NCS

and CS in (2.3) are at the lines 11 and 20, respectively, the observation function obs′ on X ′ is given by

obs′(x)(q) = (x.pcq = 11 ? 1 : x.pcq = 20 ? 2 : 0) .

We need several invariants for machine K ′. The method described in Section 3.1 is used to collect
and prove invariants. The proof assistant PVS of [4] was used to determine threatened predicates and
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potential remedies. For numbers i and k, one defines the sets of threads [i] = {q | pcq = i} and
[i, k] = {q | i ≤ pcq ≤ k}.

A thread is said to be active iff it is in [13, 21]. The number of active threads is given by the invariant

Iq1 : #[13, 21] = free− low .

Indeed, this predicate is inductive: initially, both sides are zero; when some thread executes line 12, it
enters the set [13, 21] and increments free; when it executes line 21, it leaves [13, 21] and increments low.

For the tickets we have the invariants

Iq2 : q, r ∈ [13, 21] ∧ ticketq = ticketr ⇒ q = r ,
Iq3 : q ∈ [13, 21] ⇒ ticketq < free .

Predicate Iq2 is threatened only by step 12. It has the remedy Iq3. Predicate Iq3 is inductive.
All tickets above high are still active:

Iq4 : high ≤ n < free ⇒ ∃ q ∈ [13, 21] : ticketq = n .

This predicate is threatened only by the steps 18 and 21. It has the respective remedies

Iq5 : q ∈ [15, 18] ⇒ ticketq = high ,
Iq6 : q ∈ [19, 21] ⇒ ticketq < high .

Predicate Iq5 is threatened only by step 18. It has the remedy Iq2.
Predicate Iq6 is threatened only by the steps 14 and 18. At step 18, it has the remedy Iq5. At step

14, it has the remedy

Iq7 : q ∈ [14] ⇒ ticketq ≤ high .

Predicate Iq7 is threatened only by step 18. It has the remedy Iq5.
The set [13, 21] is the disjoint union of the two sets

(1) Batch = {q | q ∈ [13, 21] ∧ ticketq < high} ,
Waiting = {q | q ∈ [13, 21] ∧ high ≤ ticketq} .

The number of elements of Waiting is determined by

Crit1 : #Waiting = free− high.

This follows easily from Iq2, Iq3, Iq4, together with the new invariant

Jq1 : high ≤ free .

Predicate Jq1 is threatened only by step 18. It has the remedy

Jq2 : q ∈ [17, 18] ⇒ ticketq + M ≤ free .

Predicate Jq2 is inductive.
Using Iq1 and Crit1, one easily obtains

Crit2 : #Batch = high− low.

This implies that the set Batch is empty if and only if high = low. The difference between high and low

is governed by the two invariants:

Jq3 : (high = low + inCS) ∨ (∃ q : q ∈ [18]) ,
Jq4 : q ∈ [16, 18] ⇒ high = low .

The conjunction of Jq3, Jq4 and Crit2 implies

Jq3A : (#Batch = inCS) ∨ (∃ q : q ∈ [18]) ,
Jq4A : q ∈ [16, 18] ⇒ Batch = ∅ .
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So the size of Batch is reflected in the value of inCS.
Predicate Jq3 is threatened only by step 18. It has the remedies Iq5 and the new predicate

Jq5 : q ∈ [18] ⇒ inCS = M .

Predicate Jq4 is threatened only by the steps 16 and 18. It has the remedies Jq3 and the new predicate

Iq2A : q, r ∈ [15, 18] ⇒ q = r .

Predicate Iq2A is implied by Iq2 and Iq5.
Predicate Jq5 is threatened only by step 21. It has the remedies Jq4A and

Jq6 : q ∈ [19, 21] ⇒ q ∈ Batch .

Predicate Jq6 is threatened only by the steps 14 and 18. It has the remedies Jq4A, Iq7. This concludes
the construction and proof of the invariants for the partial barrier.

Absence of deadlock

Absence of deadlock can be proved in the following form:

Theorem 1 Assume that the number of active threads is at least M . Then there is an active thread that
can do a step.

Proof. By Iq1, the assumption implies that low + M ≤ free. If q ∈ Batch, then it is active and Iq5
implies that it is in not in [15, 18]. Therefore, it can do a step. One can therefore assume that Batch is
empty. Then Crit2 implies that high = low. This implies that high + M ≤ free. As M > 0, predicate
Iq4 implies that there is an active thread p with ticketp = high. If thread p is at line 13 or 16, it is
enabled. If it is a line 15, it is also enabled because of Jq3 and Iq2A. 2

Every step of an active thread means progress, because the algorithm has no other loops than the
main loop that contains NCS and CS.

3.4 Overflow

The above verification of the algorithm assumes unbounded integers, but the integers on an actual
computer are bounded, and will give overflow when the incrementations in line 12 accumulate. This may
affect the comparisons in the lines 13, 14, and 15. For the taming of the overflow, a new invariant is
postulated:

Jq7 : q ∈ [13, 21] ⇒ high−M ≤ ticketq .

This predicate is threatened only by step 18. It has the remedies Jq1, and Iq5 and Jq4A.
Assume that the total number of threads is bounded by N . Then Crit1 implies that free−high ≤ N .

Using Iq3 and Jq7, it follows that the active threads satisfy

−M ≤ ticketq − high < N ,
−M < free− ticketq −M ≤ N .

If the constants −M and N give no overflow, the exprssions ticketq − high and free− ticketq −M also
give no overflow. These expressions are sufficient for the guards in the lines 13, 14, 15. It therefore suffices
to replace the inequalities x ≤ y and x = y by 0 ≤ y − x and 0 = y − x, respectively.
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3.5 Refinement

The machines of the prototype and the implementation are now related by means of a refinement function.
In general, for any pair of machines K = (X,Y,N, obs) and K ′ = (X ′, Y ′, N ′, obs′), a function f : X ′ → X
is called a refinement function from K ′ to K iff the machine K ′ has an invariant J such that

C1 : ∀ x ∈ X ′ : x ∈ Y ′ ⇒ f(x) ∈ Y ,
C2 : ∀ x1, x2 ∈ X ′ : x1 ∈ J ∧ (x1, x2) ∈ N ′ ⇒ (f(x1), f(x2)) ∈ N ,
C3 : ∀ x ∈ X ′ : x ∈ J ⇒ obs(f(x)) = obs′(x) .

The relevance of this definition is that every execution of K ′ is mapped to an execution of K, and that
every observation sequence of K ′ is an observation sequence of K.

For the state machines K and K ′ of the Sections 3.2 and 3.3, respectively, a refinement function f
from K ′ to K is constructed as follows. First, the sets Batch and Waiting of Formula (1) depend of the
state x ∈ X ′; this dependance is made explicit by writing Batch(x) and Waiting(x), respectively. Now
the function f maps the state x ∈ X ′ to the state y = f(x) in X with the fields y.W = Waiting(x) and
y.B = Batch(x) and y.pcq = g(x.pcq) where

g( `) = (` = 12 ? 2
: 13 ≤ ` ≤ 19 ? 3
: ` = 20 ? 4
: ` = 21 ? 5 : 1) .

The verifications of the conditions C1 and C3 are trivial.
It remains to verify C2. Let J be the conjunction of all invariants obtained in Section 3.3. Let

(x1, x2) ∈ N ′. If it is an identity step x1 = x2 of machine K ′, then f(x1) = f(x2) is an identity step of
machine K. Therefore, assume that it is a step of thread p at line `. Step 11 of K ′ does not affect the sets
Waiting and Batch, and corresponds to step 1 of K. Step 12 of K ′ adds thread p to Waiting because of
the invariant Jq1; this corresponds to step 2 of thread p in machine K. The steps ` with 13 ≤ ` ≤ 17 do
not modify high or ticket, and therefore keep Waiting and Batch constant; they correspond to identity
steps of K. If thread p does step 18, it satisfies the precondition Batch = ∅ because of Jq4A. It transfers
M elements from Waiting to Batch because of Iq2, Iq4, and Jq2. Therefore, it corresponds to the butler
step in K. If thread p does step 19, it has the precondition ticketp < high because of Iq6. Therefore
this step corresponds to step 3 of thread p in K. Finally, it is easy to see that the steps 20 and 21 of K ′

correspond to the steps 4 and 5 of K, respectively.

Remark. The skip step of line 19 of K ′ corresponds to the await step of line 3 in K. If one does not
introduce the skip step, one is forced to map step 18 of K ′ to a combination of the butler step with the
await step of K.

4 Conclusion

The easiest specification of the partial barrier is by means of a prototype state machine. A system is or
implements a partial barrier if and only if it refines the prototype. A partial barrier can be implemented
by atomic read/write integers with a fetch-and-increment instruction.
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