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Abstract

A partial barrier for size M is a synchronization mechanism for thread systems that allows threads
repeatedly to pass an entry point only in batches of precisely M elements. The paper presents the
design of a partial barrier, based on trylock. The safety of the design is proved by means of invariants
and a refinement function towards a partial barrier prototype. Progress is proved with bounded Unity.
In this way, the proof of progress gives at the same time an estimate of the concurrent complexity.
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1 Introduction

In a system of N threads, a barrier is a synchronization mechanism to let the threads repeatedly pass
through a barrier point. When a thread arrives at this point, it has to wait for all threads to arrive. The
threads can pass the point only when all have arrived.

A partial barrier is a variation of this idea. A partial barrier for size M is a synchronization mechanism
for thread systems that allows threads repeatedly to pass an entry point only in batches of precisely M
elements. The members of the batch can subsequently release membership. When all members have
released, and enough new participants are available, a new batch can be formed and launched.

Just as with mutual exclusion, in a system with a partial barrier, every thread is in an unbounded
loop of the form

loop of thread p ;
NCS ; entry ; CS ; release

end of loop .

Here CS is the critical section that the threads enter only in batches with M members, and NCS is the
noncritical section. CS and NCS are program fragments that do not concern us except for the question
which threads are currently executing them.

In general, a partial barrier is not a barrier. It can serve as a barrier if M is the total number of
threads. At the other extreme, the case of M = 1 is mutual exclusion, compare [2] and the references
given there. Indeed, the partial barrier looks like a special case of group mutual exclusion, see [1] and its
references.

What are the requirements for partial barriers? It is clearly required that the number of threads in CS
must be ≤M . This, however, is not enough, because it would allow batches with fewer than M members
to be launched, and it would allow new threads to enter CS when some members of the previous batch
have been released, and others not. We therefore present in Section 2 a partial barrier prototype as a
formal specification.

The aim of this paper is to construct a partial barrier for size M , based on the synchronization
primitive trylock. The implementation proposed is developed in Section 3. The safety of the design, i.e.,
the functional correctness, is proved in Section 4. Progress is verified with bounded Unity, in Section 5.
Conclusions are drawn in Section 6.
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2 Formal Specification

The easiest way to specify a partial barrier is to require that its lifetime loop implements (i.e., simulates)
the following prototype, where W is the set of waiting threads and B is the batch.

shared variables :
W,B : set of thread ;

initially: W = B = ∅ .

loop of thread p :
1 NCS ;
2 add p to W ;
3 await p ∈ B ;
4 CS ;
5 remove p from B
end loop .

The lines 2 and 3 represent entry , and line 5 represents release. Repeatedly, the sets W and B are
modified by an auxiliary thread, the butler:

loop of thread butler :
〈 if B = ∅ ∧ #W ≥M then

choose B ⊆W with #B = M ;
W := W \B ;

endif 〉
end loop .

The brackets 〈 〉 enclose a single atomic transition. For a finite set S, the expression #S denotes its
cardinality, its number of elements. So, the butler can act only if B is empty and at least M threads are
waiting, it then moves M threads from W to B. The aim, however, is not to dedicate a special thread
to the role of butler, but to let this role be played by one of the waiting threads.

The progress requirement of the prototype is weak fairness: if one of its steps is continually enabled,
then it is taken eventually. This holds in particular for the butler step and for step 3. The butler step
is enabled iff B = ∅ ∧ #W ≥ M . When this holds, it remains valid until (unless) a batch B is chosen
with #B = M . Therefore, in every implementation, the condition B = ∅ ∧ #W ≥ M must lead to
#B = M . Similarly, weak fairness of step 3 means that, in every implementation, the condition p ∈ B
must lead to a state where p is in line 4 or 5.

3 Implementation using trylock

The partial barrier to be constructed is based on trylock, a synchronization primitive that consists of
two functions: trylock and unlock. A call of trylock returns a boolean that indicates whether the calling
thread has obtained the lock. A successful thread can release the lock by calling unlock. The primitive can
be offered by the hardware or the operating system as a compare-and-swap. It can also be implemented
with atomic registers, e.g., see [7].

The partial barrier is constructed as follows. Assume that the system has N threads, numbered 0,
. . . , N − 1. The partial barrier uses a shared array aa of N integers, initially all 0. If aa[p] = 2, thread p
has access to the critical section. If aa[p] = 1, thread p is waiting to obtain access. Otherwise, thread p
is not interested and aa[p] = 0. A boolean flag, initially true, is used to to avoid that trylock is flooded
unnecessarily.

The function entry uses the local variable k to hold a thread, and bar to hold a set of threads.
Addition for thread numbers i, j < N is defined by i ⊕ j = (i + j) mod N . The function entry and
release are given by
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entry(thread p) :
12 aa[p] := 1 ;
13 while ¬ trylock(p) do
14 await (aa[p] = 2 ∨ flag) ;
15 if aa[p] = 2 then return endif

endwhile ;
16 if aa[p] = 2 then
17 unlock(p) ; return endif ;
18 flag := false ; bar := singleton(p) ; k := p⊕ 1 ;
19 while #(bar) < M do

if aa[k] = 1 then add k to bar endif ;
k := k ⊕ 1

endwhile ;
20 for each k do await(aa[k] 6= 2) endfor ;
22 for each k ∈ bar do aa[k] := 2 endfor ;
23 flag := true ;
24 unlock(p)

end entry .

release(thread p) :
26 aa[p] := 0

end release .

For each thread q, the value of aa[q] cycles from 0 to 1 (line 12), from 1 to 2 (line 22), from 2 to 0
(line 26). In line 13, one of the waiting threads gets the lock to select a new batch of M waiting threads.
If mu = ⊥, then flag holds and some waiting threads can try to get the lock.

At most one thread can get the lock, let us call it the “butler”. It selects the new batch in the set
bar, in loop 19. Here thread p cycles through the threads to find enough threads k with aa[k] = 1. Note
that bar is a set; addition of an element has no effect if it is already in the set.

The new batch can only be launched when all members of the previous batch have been released; this
is verified by the await statements of loop 20. The loops at 19 and 20 can be done in arbitrary order,
and can even be done in parallel. The verification below treats the order presented here. While thread p
is in line 19 or 20, the lock prohibits execution of line 22, and thus all transitions of aa[q] from 1 to 2,
for any thread q. It follows that the predicates inspected by thread p in the loops 19 and 20 are stable
until p itself goes to line 22.

In line 22, thread p notifies the selected threads k by setting aa[k] := 2. At the moment of its
notification, a selected thread can be at various locations of the function entry . This is the reason for
the two internal return statements, in the lines 15 and 17.

When the butler has performed its task, it leaves by unlocking the lock, and enters CS with the batch
it has selected. If at this point, there are threads waiting, a new butler must be appointed. For this
reason the busy-waiting loop 13-15 includes repeated calls of trylock. On the other hand, any thread q
with aa[q] = 2 must leave the call of entry without waiting and therefore must not be selected as butler.

4 Verification of safety

In Section 4.1, the calls entry and release of Section 3 are placed in a lifeline loop to match the prototype
of Section 2. Section 4.2 collects and proves the invariants needed for safety. Section 4.3 presents and
proves the refinement function to the prototype. In Section 4.4, some additional invariants are obtained
that are needed for the proofs of progress in Section 5.

4.1 The transition system

The primitive trylock is modeled by means of a shared variable mu, which is initially equal to ⊥. If
mu 6= ⊥, the value of mu is the thread that holds the lock. The call of trylock(p) is equivalent to atomic
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statement

〈 if mu = ⊥ then mu := p ; return true else return false endif 〉 .

The complement unlock(p) is equivalent to mu := ⊥, but must have precondition mu = p.
For the verification of safety, the pair entry , release is included in the transition system of the lifeline

loop below.

loop of thread p :
11 NCS ;
12 aa[p] := 1 ;
13 if mu 6= ⊥ then
14 await aa[p] = 2 ∨ flag ;
15 if aa[p] = 2 then goto 25 else goto 13 endif ;

else mu := p ;
16 if aa[p] = 2 then
17 mu := ⊥ ; goto 25

endif ;
18 flag := false ; barp := singleton(p) ; kkp := p⊕ 1 ;
19 while #(barp) < M do

if aa[kkp] = 1 then add kkp to barp endif ;
kkp := kkp ⊕ 1

endwhile ;
lisp := allthreads ;

20 while exists kkp ∈ lisp do
21 await aa[kkp] 6= 2 ; remove kkp from lisp

endwhile ;
22 while exists k ∈ barp do

aa[k] := 2 ; remove k from barp
endwhile ;

23 flag := true ;
24 mu := ⊥

endif ;
25 CS ;
26 aa[p] := 0
end loop .

In loop 19, the local variable kkp indicates the next thread to investigate.
For the loops 20 and 22, the order of treatment is not important. In loop 20, the local variable lisp

holds the set of the threads k for which thread p has yet to test if aa[k] 6= 2. In line 21, the variable kkp

indicates where thread p is waiting. The variable kkp are not needed in loop 22, because the treatment
of k can be included in a single atomic command.

The initial condition is

mu = ⊥ ∧ flag ∧ (∀ q : aa[q] = 0 ∧ pcq = 11) .

Here, pcq is the program counter, that indicates the next line to be executed by thread q.

4.2 Invariants for the transition system

The notation [i, k] is used to denote the set of threads q with i ≤ pcq ≤ k. Similarly, [`] is the set of
the threads q with pcq = `. The first invariant to mention implies that there is at most one thread that
holds the lock, expressed in

Iq1 : q ∈ [16, 24] ⇒ mu = q .
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This predicate is inductive.
The second point is that aa[q] = 2 holds if thread q is in CS or approaching or leaving it:

Iq2 : q ∈ [23, 26] ⇒ aa[q] = 2 .

This predicate is threatened only by the steps 17 and 22. It has the respective remedies

Iq3 : q ∈ [17] ⇒ aa[q] = 2 ,
Iq4 : q ∈ [19, 22] ⇒ q ∈ barq ∨ aa[q] = 2 .

The predicates Iq3 and Iq4 are inductive.
As a new batch must not be launched before all threads of the previous batch have been released, one

needs command 20 with the invariant

Iq5 : q ∈ [20, 21] ∧ aa[r] = 2 ⇒ r ∈ lisq .

Predicate Iq5 is threatened only by step 22. It has the remedy Iq1.
The conditional command 16-17 serves to ensure the invariant

Jq1 : q ∈ [18, 21] ⇒ aa[q] = 1 .

Predicate Jq1 is threatened only by the steps 16 and 22. At step 22, it has the remedy Iq1. At step 16,
it has the remedy

Jq2 : q ∈ [13, 26] ⇒ aa[q] = 1 ∨ aa[q] = 2 .

Predicate Jq2 is inductive. Threads in [11, 12] must not be included in a new batch. Therefore, one
postulates

Jq3 : q ∈ [11, 12] ⇒ aa[q] = 0 .

Predicate Jq3 is threatened only by step 22. It has the remedy

Jq4 : q ∈ [19, 22] ∧ r ∈ barq ⇒ aa[r] = 1 .

Predicate Jq4 is threatened only by the steps 18, 22, and 26. It has the respective remedies Jq1, Iq1,
Iq2.

The loop at line 19 has the obvious postcondition

Jq5 : q ∈ [20, 21] ⇒ #(barq) = M .

Indeed, this predicate is threatened only by step 19. Its remedy is the inductive invariant

Jq6 : q ∈ [19, 24] ⇒ #(barq) ≤M .

As a preparation of the refinement function, the disjoint sets Waiting and Batch are defined by
Waiting = A1 \bar22 and Batch = A2 ∪bar22 where A1 = {q | aa[q] = 1} and A2 = {q | aa[q] = 2} and

bar22 = {q | ∃ p : p ∈ [22] ∧ q ∈ barp} .

The reason for introducing bar22 is that step 20E from line 20 to line 22 must fill Batch with M elements
in a single step.

It follows from Iq5 and Iq1 that

Iq5A : q ∈ [20] ∧ lisq = ∅ ⇒ Batch = ∅ .

It follows from Jq4 and Iq1 that

Jq4A : q ∈ [20] ⇒ barq ⊆Waiting .



whh600 – 6

4.3 Refinement from implementation to prototype

The state space X of the implementation is spanned by the shared variables mu and aa[N ], and the
private variables lisp, barp, kkp, pcp, for all threads p. Similarly, the prototype of Section 2 has a state
space X0 spanned by the shared variables W and B, and the program counters pcp for all threads p. Note
that the butler thread of the prototype does not need a program counter because it has only one atomic
command, which can be executed whenever its precondition holds.

There are many ways to show simulation relations between concurrent algorithms, e.g., for an overview
see [4]. The simplest way is by constructing a refinement function. This is sufficient for the present
purposes. It is a function f , from the state space X of the implementation to the state space X0 of the
prototype, that maps the initial states of X to the initial states of X0, and that maps every step of the
implementation to a step of the prototype. This means that for every pair of states (x, y) in X, for which
there is a thread p that can change x into y, either f(x) = f(y) or there is a step from f(x) to f(y) in
X0 by some thread.

The refinement function proposed is defined as follows. First note that the invariants of Section 4.2
implicitly depend on the state x ∈ X. The program counters pc and the sets Batch and Waiting also
depend on state x. This is made explicit by writing x.pcq and Batch(x) and Waiting(x). The refinement
function f : X → X0 is defined by

f(x) = ( W := Waiting(x), B := Batch(x),pc := (λ q : g(x.pcq)) ) , where
g(`) = (` = 11 ? 1 : ` = 12 ? 2 : ` = 25 ? 4 : ` = 26 ? 5 : 3) .

In particular, the locations of NCS (11 and 1), of CS (25 and 4), and of release (26 and 5) are made to
correspond.

In order to prove that this function f is a refinement function, first note that indeed the initial states
of the implementation are mapped to initial states of the prototype, and that the observables NCS and
CS correspond. The main point, however, is to verify that the steps of the implementation map to steps
of the prototype.

The most drastic step of the implementation is step 20E, from line 20 to line 22. In line 20, the set
Batch is empty by Iq5A, it becomes equal to barp. In the precondition, barp is a subset of Waiting
because of Jq4A, it has M elements because of Jq5. Also using Iq1, it follows that step 20E of the
implementation is mapped to the butler step of the prototype.

Step 11 of thread p in the implementation is mapped to step 1 of p in the prototype. Step 12 is
mapped to step 2 of the prototype, here one needs the invariants Jq3 and Jq4. The steps 13 and 14 of
thread p are mapped to the identity step of the prototype. Step 15 of thread p is mapped to step 3 of the
prototype if aa[p] = 2. Otherwise it is mapped to the identity step. Steps 16 and 17 are mapped to the
identity step. Step 18 is mapped to step 3 of the prototype, because of the invariants Iq1 and Iq3. The
steps of line 19, and the steps from 20 to 21, and from 21 to 20 are mapped to the identity step of the
prototype, as are the steps from the lines 22 and 23, because of Iq1. Step 24 is mapped to step 3 of the
prototype because of Iq1 and Iq2. Step 25 is mapped to step 4. Step 26 is mapped to step 5, because of
Iq2 and Jq4. This concludes the proof that the implementation simulates the prototype.

4.4 Invariants for progress

For the sake of progress, we need some additional invariants. This first one is:

Kq1 : mu = ⊥ ⇒ flag .

This predicate is threatened only by the steps 17, 18, 24. At step 18, Iq1 is a remedy. At the steps 17
and 24, it has the remedies

Kq2 : q ∈ [16, 17] ⇒ flag ,
Kq3 : q ∈ [24] ⇒ flag .

Predicate Kq2 is threatened only by the steps 13 and 18. It has the remedies Kq1 and Iq1. Predicate
Kq3 is threatened only by step 18. It has the remedy Iq1.

We also need the inductive invariants:
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Kq4 : mu = ⊥ ∨ mu ∈ [16, 24] ,
Kq5 : q ∈ [21] ⇒ kkq ∈ lisq .

5 Progress with UNITY

The progress properties of the algorithm are expressed and proved by means of bounded UNITY. This
is a variation of UNITY of Chandy and Misra [3, 8], which was proposed in [5, 6]. The central concept
of UNITY is “leads to”. Predicate P leads to predicate Q iff every computation that starts in a state
where P holds reaches a state where Q holds. Bounded UNITY quantifies this by introducing “rounds”.
Predicate P leads to Q within n rounds iff every computation that starts in P and contains at least n
rounds reaches a state where Q holds.

Section 5.1 contains an operational introduction. The theory of UNITY and bounded UNITY is
presented in Section 5.2. Section 5.3 gives the two leads-to relations for the partial barrier, which are
then treated in the Sections 5.4 and 5.5, respectively.

5.1 Operational introduction

The state of the system is given by the values of all shared and private variables. Usually, one prefers to
keep the state implicit, but formally all invariants are boolean functions of the state. Just as in Section
4.3, let X be the set of all states. If P is a predicate on the state, it is also regarded as the subset of
X where predicate P holds. An inclusion P ⊆ Q therefore means that every state that satisfies P also
satisfies Q (i.e. that P implies Q). Let init be the initial predicate, i.e., the set of initial states.

For thread p, relation step(p) is defined as the set of the pairs (x, y) of states such that in state x
thread p can do a step of the algorithm that results in state y. Relation step is defined as the union of the
relations step(p) for all threads p, together with the identity relation of the state space. An execution is
defined as an infinite sequence s = (s0, . . .) with s0 ∈ init and (si, si+1) ∈ step for all i ≥ 0. A predicate
P is an invariant iff it contains all executions. Let Inv ⊆ X be the intersection of all invariants obtained
for the algorithm, in the sections 4.2 and 4.4.

A step of thread p is called a forward step iff thread p does not start in line 11. This is because steps
from line 11 are triggered by the environment, and not by the algorithm. One thus defines

(x, y) ∈ fwd(p) ≡ x.pcp 6= 11 ∧ (x, y) ∈ step(p) .

Thread p is said to be enabled in state x iff there is a state y with (x, y) ∈ fwf (p). This is expressed by
the predicate ena(p). For the transition system of Section 4, one obtains

ena(p) ≡ p ∈ [12, 26] ∧ (p ∈ 14 ⇒ aa[p] = 2 ∨ flag)
∧ (p ∈ [21] ⇒ aa[kkp] 6= 2) .

Let a run of length n ≥ 0 be a nonempty finite sequence s = (s0 . . . sn) in Inv such that (si, si+1) ∈ step
whenever 0 ≤ i < n. Two runs can be concatenated when the final state of the first fragment equals the
initial state of the second fragment.

An occurrence of thread p in a run (s0 . . . sn) is a number i with 0 ≤ i < n, and (si, si+1) ∈ fwd(p) or
si /∈ ena(p). The run (s0 . . . sn) is called a round iff it contains an occurrence of every thread. In other
words, in the run, every thread is scheduled at least once, and is either executed or found to be disabled.

Progress of the algorithm will be proved under the assumption that all threads do enough forward
steps unless they are disabled. More precisely, progress will be proved for any run that is a concatenation
of sufficiently many rounds. This is done in bounded UNITY by assertional means, not by investigating
runs.

5.2 UNITY and bounded UNITY

UNITY logic [3, 8] is a method of assertional reasoning to prove assertions of the form “P leads to Q”
(notation P 7→ Q), meaning: if P holds at any time t during a computation, Q will hold at some time
t′ ≥ t.

The starting point consists of the relations co and co! between predicates P and Q:
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P co Q ≡ ∀ (x, y) ∈ step : x ∈ P ⇒ y ∈ Q ,
P co! Q ≡ ∃ r : P ⊆ ena(r) ∧ (∀ (x, y) ∈ fwd(r) : x ∈ P ⇒ y ∈ Q) .

P co Q says that every step that starts in P ends in Q. The operator co! indicates that a particular
thread r is responsible for reaching Q. The operators co and co! are used to define the operators unless
and ensures in

P unless Q ≡ (P ∧ ¬Q ∧ Inv) co (P ∨Q) ,
P ensures Q ≡ (P unless Q) ∧ ((P ∧ ¬Q ∧ Inv) co! Q) .

The leads-to relation of UNITY is defined inductively by the three rules

(a) P ensures Q implies P 7→ Q.
(b) Relation 7→ is transitive.
(c) If a family (Pi)i∈I has Pi 7→ Q for all i ∈ I, then (∃ i ∈ I : Pi) 7→ Q.

Bounded UNITY [5, 6] extends the leads-to relation of UNITY with the number of rounds needed.
We write P Lt〈n〉 Q to denote that every run that starts in a state where P holds and that contains a
concatenation of n rounds, contains a state where Q holds. The main proof rules are

(a1) If P ∧ Inv ⊆ Q then P Lt〈n〉 Q for every n ≥ 0.
(a2) P ensures Q implies P Lt〈1〉 Q.
(b) If P Lt〈k〉 Q and Q Lt〈m〉 R, then P Lt〈k +m〉 R.
(c) If a family (Pi)i∈I has Pi Lt〈n〉 Q for all i ∈ I, then (∃ i ∈ I : Pi) Lt〈n〉 Q.

Rule (a2) is called the ensures rule, rule (c) the disjunction rule. The validity of these rules in the
operational semantics is verified with the proof assistant PVS [9]. The same hasen done with the so-
called PSP rule [3, 8], which in bounded UNITY [5, 6] has the form

PSP-rule Assume that P Lt〈n〉 Q and R unless B. Then (P ∧R) Lt〈n〉 ((Q ∧R) ∨B).

The main rules are used to infer the following derived rules:

(b1) If P Lt〈k〉 Q and k ≤ m then P Lt〈m〉 Q.
(b2) If P Lt〈k〉 Q and P ′ ∧ Inv ⊆ P then P ′ Lt〈k〉 Q.
(b3) If P Lt〈k〉 Q and Q ∧ Inv ⊆ Q′ then P Lt〈k〉 Q′.
(b4) If P Lt〈k〉 (Q ∨R) and Q Lt〈m〉 R then P Lt〈k +m〉 R.

In many cases, a proof for UNITY can easily be tranformed into a proof for bounded UNITY by adding
the administration of the numbers of rounds needed. The resulting number of rounds can be regarded as
an estimate of the concurrent complexity of the algorithm.

5.3 Bounded UNITY for the algorithm

As discussed in Section 2, the liveness condition required is that every step of the prototype that is
continually enabled, will eventually be taken. The steps 1, 2, 4, 5 of the prototype correspond to single
steps of the implementation (11, 12, 25, 26, respectively). It remains to treat two steps: the butler step
and step 3 of the prototype. When these steps are enabled, they should eventually be taken. Transferred
to the implementation, they correspond to the leads-to relations

L1 : Batch = ∅ ∧#Waiting ≥M 7→ #Batch = M ,
L2 : p ∈ Batch 7→ p ∈ Final .

Here Final is the set of location of CS combined with release. Therefore Final = [25, 26].
In the next sections, quantified versions of these relations are proved.
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5.4 L1: eventually a batch is launched

In order to prove the leads-to relation L1, let its precondition and its postcondition be denoted PreB and
PostB, respectively. We thus have PreB = (Batch = ∅ ∧#Waiting ≥ M) and PostB = (#Batch = M).
The first conjunct of PreB satisfies:

(0) Batch = ∅ ≡ (A2 = ∅) ∧ (mu = ⊥ ∨ mu ∈ [16, 21]) .

In fact, the implication from right to left follows from the definition of Batch, the implication from left
to right uses Jq2, Jq4, and Kq4. It follows that PreB can only be falsified by step 20E (from line 20 to
22). Now using Jq5 and Iq1, one obtains as a first step towards L1:

(1) PreB unless PostB .

Step 20B can only be executed if there is a thread that holds the lock and is at line 20. The lock
can only be obtained at line 13. Threads interested in the lock circle through the lines 13, 14, 15. We
therefore prove that

p ∈ [13] ensures mu 6= ⊥ ,
p ∈ [14] ensures p ∈ [15] ∨ mu 6= ⊥ ,
p ∈ [15] ∧ aa[p] 6= 2 ensures p ∈ [13] ∨ mu 6= ⊥ .

Note that there is no suggestion that thread p gets the lock. The step from line 13 is easy. The step from
line 14 uses the invariant Kq1. The step from line 15 uses Iq1 to avoid interference with step 22.

In these three propositions the ensures relation is replaced by Lt〈1〉. Subsequently, the PSP-rule is
applied to them with the unless relation of (1). Putting Mubb = ((mu 6= ⊥∧ PreB) ∨ PostB), this gives

p ∈ [13] ∧ PreB Lt〈1〉 Mubb ,
p ∈ [14] ∧ PreB Lt〈1〉 (p ∈ [15] ∧ PreB) ∨Mubb ,
p ∈ [15] ∧ PreB Lt〈1〉 (p ∈ [13] ∧ PreB) ∨Mubb .

The UNITY rules now enable us to infer

p ∈ [13, 15] ∧ PreB Lt〈3〉 Mubb .

Predicate PreB implies the existence of threads p with aa[p] = 1. If mu = ⊥, such threads are necessarily
in [13, 15]. In this way, one arrives at

(2) mu = ⊥ ∧ PreB Lt〈3〉 Mubb .

We turn to the proof that the first disjunct of Mubb leads to the second disjunct. For this purpose,
we first prove that

p ∈ [16] ∧ aa[p] 6= 2 ensures p ∈ [18] .

Again, the ensures rule is applied, followed by the PSP-rule with the unless relation of (1). This gives

(3) p ∈ [16] ∧ PreB Lt〈1〉 (p ∈ [18] ∧ PreB) ∨ PostB .

We then prove p ∈ [18] ensures p ∈ [19]. Again the PSP-rule is applied, which gives

(4) p ∈ [18] ∧ PreB Lt〈1〉 (p ∈ [19] ∧ PreB) ∨ PostB .

In loop 19, the conjunct #Waiting ≥ M of PreB is to be used. This conjunct implies #A1 ≥ M .
When this condition becomes true, thread p can be anywhere in loop 19, i.e., kkp = q for some thread
q. After this, thread p proceeds in its loop, and kkp moves along the circle. If j ≤ N , then after j steps,
thread p has covered the set of threads

S(q, j) = {r | q ≤ r < q + j ∨ r < q + j −N} .

By induction, one proves for any threads p, q, any set of threads W , and any natural number j ≤ N , the
leads-to relation
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(p ∈ [19] ∧ kkp = q ∧W ⊆ A1) Lt〈j〉
(p ∈ [19] ∧ kkp = q ⊕ j ∧W ⊆ A1 ∧ (W ∩ S(q, j) ⊆ barp)) ∨ p ∈ [20] .

If j = N then S(q, j) is the set of all threads. Therefore, if W has at least M elements, barp has at least
M elements. In this way, one arrives at

(p ∈ [19] ∧ kkp = q ∧W ⊆ A1 ∧M ≤ #W ) Lt〈N〉
(p ∈ [19] ∧M ≤ #barp) ∨ p ∈ [20] .

The disjunction rule is used to remove the free variables q and W , and to obtain

(p ∈ [19] ∧M ≤ #A1) Lt〈N〉 (p ∈ [19] ∧M ≤ #barp) ∨ p ∈ [20] .

It is easy to prove that (p ∈ [19] ∧M ≤ #barp) ensures p ∈ [20]. Therefore, transitivity gives

(p ∈ [19] ∧M ≤ #A1) Lt〈N + 1〉 p ∈ [20] .

Finally, the PSP-rule with (1) gives

(5) p ∈ [19] ∧ PreB Lt〈N + 1〉 (p ∈ [20] ∧ PreB) ∨ PostB .

For the loop of the lines 20, 21, we introduce

C(p, `, i) = (p ∈ [`] ∧A2 = ∅ ∧#lisp = i) .

Using Kq5, one proves that these predicates satisfy the ensures relations

C(p, 20, i+ 1) ensures C(p, 21, i+ 1) ensures C(p, 20, i) ,
C(p, 20, 0) ensures p ∈ [22] .

From this, one can infer

p ∈ [20, 21] ∧A2 = ∅ Lt〈2 ·N + 1〉 p ∈ [22] .

The PSP-rule with the unless relation of (1) together with formula (0) gives

(6) p ∈ [20, 21] ∧ PreB Lt〈2 ·N + 1〉 PostB .

Now rule (b4) is applied on formula (6) with (5), (4), (3), respectively. This gives

p ∈ [19] ∧ PreB Lt〈3 ·N + 2〉 PostB ,
p ∈ [18] ∧ PreB Lt〈3 ·N + 3〉 PostB ,
p ∈ [16] ∧ PreB Lt〈3 ·N + 4〉 PostB .

The disjunction rule with formula (0) and the invariant Iq3 gives

mu 6= ⊥ ∧ PreB Lt〈3 ·N + 4〉 PostB .

Combined with formula (2), this results in

L1 : PreB Lt〈3 ·N + 7〉 PostB .

5.5 L2: From Batch to Final

The proof of leads-to relation L2 begins with the treatment of loop 22. One first proves that

p ∈ [22] ∧#barp = i+ 1 ensures p ∈ [22] ∧#barp = i ,
p ∈ [22] ∧ barp = ∅ ensures p ∈ [23] .

Using induction and the invariant Jq6, one then gets

p ∈ [22] Lt〈M + 1〉 p ∈ [23] .
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Via the disjunction rule this gives Mu22 Lt〈M + 1〉 ¬Mu22, where Mu22 = (mu 6= ⊥ ∧ mu ∈ [22]). On
the other hand, it holds that (p ∈ Batch) unless (p ∈ Final). The PSP-rule therefore implies

Mu22 ∧ p ∈ Batch Lt〈M + 1〉 (¬Mu22 ∧ p ∈ Batch) ∨ p ∈ Final .

The conjunction ¬Mu22 ∧ p ∈ Batch implies

(aa[p] = 2 ∧ p ∈ [13, 17]) ∨ p ∈ [23, 26] .

Therefore, rule (b3) can be used to get

(7) Mu22 ∧ p ∈ Batch Lt〈M + 1〉 (aa[p] = 2 ∧ p ∈ [13, 17]) ∨ p ∈ [23, 26] .

For the region [13, 17], one can prove the ensures relations

aa[p] = 2 ∧ p ∈ [13] ensures aa[p] = 2 ∧ (p ∈ [14] ∨ p ∈ [16]) ,
aa[p] = 2 ∧ p ∈ [`] ensures aa[p] = 2 ∧ p ∈ [`+ 1] for ` = 14 or 16,
aa[p] = 2 ∧ p ∈ [`] ensures p ∈ Final for ` = 15 or 17.

This is easily combined to

aa[p] = 2 ∧ p ∈ [13, 17] Lt〈3〉 p ∈ Final .

On the other hand, it is easy to prove that (p ∈ [23, 26]) Lt〈2〉 (p ∈ Final). Together this gives

(aa[p] = 2 ∧ p ∈ [13, 17]) ∨ p ∈ [23, 26] Lt〈3〉 p ∈ Final .

Combined with formula (7), this results in

L2 : p ∈ Batch Lt〈M + 4〉 p ∈ Final .

6 In conclusion

It was an important step to specify the partial barrier by means of an abstract prototype. The simplicity
of the design is illustrated by the simplicity of the invariants. The main complication for the design was
in the lines 13-17 where a butler p with aa[p] = 1 must be chosen. The proof of progress in Section 5 is
a nice illustration of various UNITY techniques.

The algorithm remains correct if the assignment flag := false (in line 18) is removed. Then flag is
always true, and line 14 can also be removed. The reason to choose the present version is that it seems
to lower the probability that the lock is taken by a thread p with aa[p] = 2, which seems to be bad for
performance. Is this confirmed by experiments?

The design of the algorithm is quite flexible. It can easily be modified in various ways. For example,
before launching a new batch, the butler can give the threads of the new batch specific tasks to execute
during the critical section. The butler can choose the size of the next batch to be formed and launched.
One can give the threads weights, and replace the requirement of precisely M threads per batch by a
condition on the total weight of a new batch. One can remove the requirement that a new batch is not
launched before all threads of the previous batch have released.
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