
A refinement proof for
Udding’s semaphore program

Wim H. Hesselink (whh456), Mark IJbema, 2011

Dept. of Computing Science, University of Groningen
P.O.Box 407, 9700 AK Groningen, The Netherlands

1 Introduction

This technical report is a companion paper of [2], in which the three semaphore
programs of [4,3,5] are shown to be implementations of a single more abstract pro-
gram. As the treatment of Udding’s algorithm [5] is largely similar to the treatment
of Morris’ program [4], we referred the formal proof for Udding’s algorithm to this
report. See [1] for the PVS proof script.

The abstract program uses the shared variables:

var se, sm : N ,
var ne, nm : Z .

The variables se and sm serve as semaphores that model the doors of the elevator
at the two floors. The variables ne and nm count the number of processes outside
and within the elevator. The initial conditions are

ne = nm = sm = 0 ∧ se = 1 .

We let p range over the processes. The code for process p is:

(0) process (p) =
loop

9 NCS ;
10 ne++ ;
11 await se > 0 ; nm++ ; ne-- ;

if ne = 0 then sm++ ; se-- endif ;
12 await sm > 0 ; sm-- ; nm-- ;
13 CS ;
14 if nm > 0 then sm++ else se++ endif

endloop .

The numbered commands are regarded as atomic. The lines 10, 11, 12, and 14, are
executed by the system, while the lines 9 and 13 are executed by the environment.

It is shown in [2] that this abstract algorithm guarantees mutual exclusion, is
deadlock-free, and has bounded overtaking with bound 2. The problem with it is
that it violates the principle of single critical reference: the shared variable ne is
both read and written in line 10, and in each of the lines 11, 12, and 14 several
shared variables are read and written.

2 Udding’s algorithm

In [5], Udding derived an algorithm to establish starvation-free mutual exclusion.
The algorithm uses a buffered semaphore sb, and two plain semaphores sm and se.
The algorithm uses integer shared variables ne and nm. The initial values are:

sb = se = 1 ∧ sm = ne = nm = 0 .



2

The semaphores sb and se combine to take over the roles of the shared variable se

of the abstract algorithm (0).

process (p) =
loop

NCS ;
P(sb) ; ne++ ; V(sb) ;
P(se) ; P(sb) ; nm++ ; ne-- ;
if ne > 0 then V(sb) else V(sm) endif ;
V(se) ;
P(sm) ; nm-- ; CS ;
if nm > 0 then V(sm) else V(sb) endif

endloop .

In this case, the pair (sb, sm) forms a split binary semaphore, where the first one
is buffered and the second one is plain. The third semaphore, se, is only needed to
ensure bounded overtaking. We show this by a scenario in the next section.

2.1 Udding’s transition system

The above algorithm is formalized in the transition system (1). The variable buf

holds the buffer of the buffered semaphore sb. The lines 10, 11 and 16, 17 correspond
to the actions P(sb). The actions V(sb) are contained in the lines 14, 22, and 28.

Just as with Morris’ algorithm, we have replaced inspections of shared variables
in the lines 22 and 28 by inspections of the private variable tmp.

Remark. If one removes the semaphore se and replaces the lines 15 and 23 by skip,
individual starvation is possible. This is shown by the following scenario for three
processes, q0, q1, and q2.

The scenario starts with all three processes at 9. It proceeds in 9 stages.
1. Process q0 goes to 14 and sets ne := 1.
2. The processes q1 and q2 go to line 11 and enter buf. Note the resulting state,
we shall see it again.
3. Process q0 executes 14, removes q1 from buf, proceeds to 17, and enters buf.
4. Process q1 goes from 11 to 14, removes q0 from buf, goes to 17, and enters buf.
5. Process q0 goes to 22, removes q1 from buf, and starts waiting at 24.
6. Process q1 goes to 22 with tmp = 0, increments sm, and arrives at 24. Now q0
and q1 are at 24, sm = 1, and nm = 2.
7. Process q0 passes through CS and goes via 28, 9, and 10 to 11, and enters buf.
8. Process q1 also passes through CS and goes via 28, where it removes q0 from
buf, and via 9 and 10 to 11, and enters buf.
9. Process q0 goes to 13 and sets ne := 1.

Here, we are in the state after stage 2. Therefore, process q2 can suffer individual
starvation if semaphore se is removed. Semaphore sb precludes this scenario because
it does not allow process q1 in stage 4 to proceed to 17. 2

The proofs of mutual exclusion and absence of deadlock in Udding’s algorithm
is largely similar to the case of Morris’ algorithm. The invariants used are minor
variations, see [2].

The invariants for the split binary semaphore (sb, sm) and the binary semaphore
se are:

Iq0: #{q | q /∈ buf ∧ q in {11 . . . 14, 17 . . . 22, 25 . . . 28}} = 1− sb− sm ,
Iq1: #{q | q in {16 . . . 23}} = 1− se .

The buffered semaphore sb induces the invariants:



3

(1) process (p) =
var tmp : Z ;
loop

9 NCS ;
10 if sb > 0 then sb-- else

buf := buf ∪ {p} ;
11 await p /∈ buf endif ;
12 tmp := ne+ 1 ;
13 ne := tmp ;
14 if possible remove some q from buf else sb++ endif ;
15 await se > 0 ; se-- ;
16 if sb > 0 then sb-- else

buf := buf ∪ {p} ;
17 await p /∈ buf endif ;
18 tmp := nm+ 1 ;
19 nm := tmp ;
20 tmp := ne− 1 ;
21 ne := tmp ;
22 if tmp > 0 then

if possible remove some q from buf else sb++ endif ;
else sm++ endif ;

23 se++ ;
24 await sm > 0 ; sm-- ;
25 tmp := nm− 1 ;
26 nm := tmp ;
27 CS ;
28 if tmp > 0 then sm++

elsif possible remove some q from buf else sb++ endif ;
endloop .

Iq2: q ∈ buf ⇒ q in {11, 17} ,
Iq3: sb > 0 ⇒ buf = ∅ .

Preservation of Iq0 follows from Iq2. Mutual exclusion is implied by Iq0.

The variables ne and nm count the number of processes in the obvious regions:

Jq0: #{q | q in {14 . . . 21} = ne ,
Jq1: #{q | q in {20 . . . 26} = nm .

The private variables tmp hold values related to ne or nm:

Jq2: (q at 13 ⇒ tmp.q = ne + 1) ∧ (q at 21 ⇒ tmp.q = ne− 1) ,
Jq3: (q at 19 ⇒ tmp.q = nm + 1) ∧ (q at 26 ⇒ tmp.q = nm− 1) .

Preservation of Jq0 follows from Jq2. Preservation of Jq1 follows from Jq3. Preser-
vation of Jq2 and Jq3 follows from Iq0.

The critical invariants against deadlock are:

Jq4: sm > 0 ⇒ ∃ r : r in {23, 24} ,
Jq5: sb > 0 ∧ q in {23, 24} ⇒ ∃ r : r in {15, 16} .

Preservation of Jq4 at the lines 24 and 28 follows from Iq0, Jq1, and Jq6 below.
Preservation Jq5 at lines 16, 22, and 28 follows from Iq0, Iq2, Iq3, Jq0, Jq1, and
Jq6.

Jq6: (q at 22 ⇒ tmp.q = ne) ∧ (q in {27, 28} ⇒ tmp.q = nm) .



4

Preservation of Jq6 follows from Iq0.
Absence of immediate deadlock is proved as follows. Assume that all processes

are idle or disabled. Then they are all at 9, 11, 15, 17 or 24. Those at 11 or 17 are
elements of buf. By Iq0, it follows that sb + sm = 1. If sm > 0, Jq4 implies there
is a process r at 24, which is necessarily enabled. It follows that sm = 0, and hence
sb = 1. From this it follows that buf is empty by Iq3. Therefore, all processes are
at 9, 15, or 24. By Iq1, it follows that se = 1. Therefore, no processes are disabled
at 15. This proves that all processes are at 9 or 24. Now, Jq5 implies that there are
no processes at 24. This proves that all processes are idle.

If there are only finitely many processes, the absence of immediate deadlock
implies deadlock-freedom, i.e., whenever there are competing processes, eventually
one of these will reach CS and exit. This is proved in the same way as for the
abstract algorithm in [2, Section 4].

2.2 Udding’s refinement

We show that Udding’s algorithm (1) implements the abstract algorithm (0) in
such a way that the environment actions and the doorways of both algorithms
correspond. This implies that it also has bounded overtaking with bound 2. We
prove it by constructing a simulation in the same way as for Morris’ algorthm in
[2].

As the environment actions and the doorways must correspond, the lines 9, 10,
and 11 of both algorithms must correspond, and the lines 27 and 28 of (1) must
correspond with the lines 13 and 14 of (0). This leaves the question where line 12
of (0) should be located in (1).

To answer this question, we consider a simple scenario. Assume that process t0
proceeds from line 9 to line 18. Then process t1 enters and arrives at line 11 with
t1 ∈ buf. Process t0 proceeds, and observes tmp.t0 = 0 at line 22. It therefore enters
CS and exits. In the abstract version, this means that process t0 completes line 11
before process t1 executes line 10. This means that the abstract step 11 must be
associated with a concrete step not later than 16.

On the other hand, when process t1 enters when process t0 is still at 16, then
process t1 will increments ne, and it can pass t0 at line 24. We therefore decide to
associate the end of the abstract step 11 with the concrete step 16.

We thus define the abstract program counter on the concrete state space by

apc.q = (pc.q ≤ 10 ? pc.q
: pc.q ≤ 16 ? 11
: pc.q ≤ 26 ? 12 : pc.q − 14) .

Now that we have localized the abstract steps in the concrete algorithm, we can
determine how that abstract shared variables ne, nm, se, and sm must be modified
in the concrete algorithm. We introduce shared integer ghost variables qne, qnm,
qse, and qsm in the concrete algorithm to plays the roles aof the abstract shared
variables. They have the initial values of their abstract counterparts:

qne = qnm = qsm = 0 ∧ qse = 1 .

In the concrete algorithm, they are modified at the lines 10, 16, 26, and 28, in the
same way as their abstract counterparts in the abstract lines 10, 11, 12, and 14:

10a qne++ ;
16a qne-- ; qnm++ ;

if sb > 0 ∧ ne = 1 then qse-- ; qsm++ endif ;
26a qnm-- ; qsm-- ;
28a if tmp > 0 then qsm++ else qse++ endif .



5

Strictly speaking, the extension of algorithm (1) with these ghost variables is a
forward simulation (or history extension). The next step is to form a refinement
function from the extended algorithm towards the abstract algorithm (0). This
function forgets the implementation variables and promotes the ghost variables to
their abstract counterparts. Just as for Morris’ algorithm in [2], it can be described
by

f(x) = (#
ne := x.qne , nm := x.qnm ,
se := x.qse , sm := x.qsm ,
pc := x.apc #) .

In order to prove that this is a refinement function, we obtain with PVS the following
proof obligations:

PO0: q at 16 ⇒ (qne = 1 ≡ (sb > 0 ∧ ne = 1)) ,
PO1: q at 28 ⇒ (tmp.q > 0 ≡ qnm > 0) ,
PO2: q at 16 ⇒ qse > 0 ,
PO3: q at 26 ⇒ qsm > 0 .

Proof obligation PO0 follows from Iq0, Iq1, Iq3, Jq0, and the new invariants:

Kq0: #{q | q in {11 . . . 16} } = qne ,
Kq1: q in {15, 16} ∧ sb = 0

⇒ (∃ r : r in {11 . . . 14} ∨ (r in {17 . . . 22} ∧ r /∈ buf)) .

Here, Kq0 is obvious, but Kq1 is proved using Iq2, Jq0 and Jq6 at the lines 14, 16,
and 22.

The proof of PO0 goes as follows. If sb > 0, then Iq3 and Iq0 imply the absence
of processes in the regions 11–14 and 17–22. Therefore, Jq0 and Kq0 give ne = qne.
Otherwise sb = 0, and Kq1 and Iq1 together imply the existence of a thread in
region 11–14; as q is at 16, it follows from Kq0 that qne > 1.

Proof obligation PO1 is strengthened to

q at 28 ⇒ tmp.q = qnm .

This follows from Jq6, Jq1, and the new invariants

Kq2: #{q | q in {17 . . . 26} } = qnm ,
Kq3: q in {11 . . . 22} ∧ r in {25 . . . 28} ⇒ q at 11 ∧ q ∈ buf .

Again, Kq2 is straightforward, but the proof of Kq3 is rather delicate and needs
the additional invariant:

Kq4: q in {11 . . . 22} ∧ sm > 0 ⇒ q at 11 ∧ q ∈ buf .

Proof obligation PO2 follows from Iq2 and the new invariant:

Kq5: q in {11 . . . 16} ∧ q /∈ buf ⇒ qse > 0 .

In order to prove this we also need to prove the invariants

Kq6: sb ≤ qse ,
Kq7: q in {21 . . . 22} ∧ tmp.q > 0 ⇒ qse > 0 ,
Kq8: q in {18 . . . 21} ∧ ne > 1 ⇒ qse > 0 ,
Kq9: q at 17 ⇒ qse > 0 .

The invariant Iq1, which is associated with the semaphore se, serves heavily in the
proofs of the last three invariants.

The final proof obligation PO3 is generalized in the invariant:



6

Lq0: q in {25, 26} ⇒ qsm > 0 .

In order to prove this, we also need to prove the invariants

Lq1: sm ≤ qsm ,
Lq2: q in {21, 22} ∧ tmp ≤ 0 ⇒ qsm > 0 ,
Lq3: q in {18 . . . 21} ∧ ne = 1 ⇒ qsm > 0 ,
Lq4: q at 17 ∧ q /∈ buf ⇒ ne > 1 .

This completes the proof that f is a refinement function from system (1) extended
with ghost variables to system (0).

The composition of the forward simulation from system (1) to its extension with
ghost variables with the refinement function to system (0) gives us a simulation from
Udding’s transition system (1) to the abstract system (0). This simulation respects
the processes and their doorways and leaves the environment actions unchanged.
If some process p in some execution of (1) overtakes another process k times, the
simulation gives us an execution of (0) in which process p overtakes the other process
k times. It follows that k ≤ 2. Therefore system (1) has bounded overtaking with
bound 2.

References

1. W.H. Hesselink. Starvation-free mutual exclusion with semaphores.
http://wimhesselink.nl/mechver/fairMXsema.html, 2011.

2. W.H. Hesselink and M. IJbema. Starvation-free mutual exclusion with semaphores.
Formal Aspects of Comput., 25:947–969, 2013. doi: 10.1007/s00165-011-0219-y.

3. A.J. Martin and J.R. Burch. Fair mutual exclusion with unfair P and V operations.
Inf. Process. Lett., 21:97–100, 1985.

4. J.M. Morris. A starvation-free solution to the mutual exclusion problem. Inf. Process.
Lett., 8:76–80, 1979.

5. J.T. Udding. Absence of individual starvation using weak semaphores. Inf. Process.
Lett., 23:159–162, 1986.


