
The verified incremental design of

a distributed spanning tree algorithm

Wim H. Hesselink, whh169
email: w.h.hesselink@rug.nl, web: wimhesselink.nl

Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen,

Groningen, The Netherlands

February 24, 2015

1

Abstract

The paper describes an incremental mechanically–verified design of the
algorithm of Gallager, Humblet, and Spira for the distributed determina-
tion of the minimum-weight spanning tree in a graph of processes. The
processes communicate by means of asynchronous messages with their
neighbours in the graph. A computational model for asynchrony is used
that enables state based reasoning. The assumption that the message
buffers are fifo is removed. The algorithm is extended with distributed
termination detection. The proof of the algorithm is based on ghost vari-
ables, invariants, and a decreasing variant function. The verification is
mechanized by means of the theorem prover NQTHM of Boyer and Moore.
The proof obligations for the mechanical proof are discussed.

An extended abstract of this paper appeared in [Hes99]. It refers to
the present paper as the full paper, but it wrongly asserts that the full
paper can be obtained from an ftp-site.

Contents

1 Introduction 4
1.1 Overview of the work . 4
1.2 Modelling asynchrony . 5
1.3 Invariants . 6
1.4 Messages in transit . 7
1.5 The role of the theorem prover 8

2 Introduction to the algorithm 10
2.1 The abstract algorithm . 10
2.2 Distribution and specification . 11
2.3 Global description of the verified design 12

3 Forest maintenance 14
3.1 The first three messages . 15
3.2 Some additional invariants . 17
3.3 Goal directed invariants . 18

4 Graph Theory 19
4.1 Reflexive transitive closures and graphs 19
4.2 Minimum–weight spanning subtrees 20
4.3 Components of a forest . 22

5 Connected components of a changing graph 25
5.1 Marking trees . 25
5.2 Identifying trees . 28

2

6 The investigation of outgoing edges 31
6.1 Collecting and sending reports 31
6.2 The local search . 33
6.3 An optimization . 36

7 The decision at the core 38
7.1 The generation of change . 38
7.2 Some pending predicates . 40
7.3 Best edges . 42
7.4 The first harvest . 43
7.5 Termination detected . 44

8 Upon termination 46
8.1 Progress invariants for report . 47
8.2 Sending wakeup and halt . 47
8.3 Deadlock in search . 48
8.4 The low level region . 49
8.5 An operational intermezzo . 50
8.6 Absorption into a nonprobing component 51
8.7 Analysis of the ultimate core . 53
8.8 The last program transformation 56
8.9 Terminated nodes are idle . 56

9 Towards termination 59
9.1 An upper bound for the levels . 59
9.2 Bounding ask and answer . 59
9.3 Other local parts of the variant function 61
9.4 Construction of the variant function 62
9.5 The message complexity of the algorithm 62

10 The algorithm 64

11 Comparisons 66

12 Hearing the witness NQTHM 68
12.1 The witness learns an asynchronous algorithm 68
12.2 The final testimony . 70
12.3 The final removal of ghost variables 71
12.4 Overview of the events files . 73

13 Conclusions 74

14 Appendix: list of invariants 74

3

1 Introduction

Given is a connected undirected graph in which all edges have different weights.
It is wellknown that such a graph has a unique minimum–weight spanning tree.
Now assume that the nodes of the graph are processes that can asynchronously
send messages to neighbour processes, and that every process only knows the
weights of its incident edges and the names of its neighbours.

In 1983, Gallager, Humblet, and Spira published an algorithm for these
processes to determine the minimum–weight spanning tree, cf. [GHS83]. The
algorithm is not very hard to understand and there are good informal explana-
tions, e.g. cf. [Tel94]. There are, however, two ways to understand an algorithm:
the reader can trust the author(s) and assume that missing details have been
treated adequately elsewhere, or he may want a conclusive argument at every
point that might go wrong. For readers of the second kind, the GHS algorithm
has never been treated satisfactorily. Indeed, the level of concurrency allowed
makes it very hard to verify that no undesired interference or deadlock occurs. A
number of groups, cf. [ChG88, SdR94, WLL88, ZwJ93], have reported on verifi-
cations of the correctness of the algorithm (or variations of it), but handwritten
proofs are almost never complete and hence not very convincing.

We have therefore undertaken the construction of a proof for a mechanical
theorem prover, so that anyone who understands the language of the prover
can verify the proof, i.e., can see what it is we are asserting, can let the prover
verify the assertions, and can inspect any detail they want to look into. We
have not proved the precise algorithm of [GHS83], but our algorithm is closely
related and at least as efficient. We claim that our mechanical proof is the first
complete formal proof of a GHS-type algorithm with all its optimizations.

We constructed the algorithm and its proof in a kind of reverse engineering.
Knowing the algorithm of [GHS83], we performed a verified incremental design
of it. Therefore, in each stage of the project, we knew the invariant properties of
the algorithm at that stage. This approach by means of a formally independent
design has the advantage that we can motivate or discuss most of the design
decisions hidden in the algorithm.

Some earlier proofs, cf. [SdR94, ZwJ93], started with the verification of a
sequential program, which is then gradually distributed in a number of pro-
gram transformations. In contrast to this approach, we start with a highly
nondeterministic distributed algorithm which is gradually tuned to fulfil the
specification.

1.1 Overview of the work

There are several issues to be addressed: modelling assumptions, specification
of the distributed algorithm, graph theory, the incremental design of the dec-
laration of the messages, invariants for safety, elimination of deadlock, proof of
termination, proof obligations for the mechanical proof.

In the remainder of this introduction we treat some issues not specific for
GHS algorithm. In Chapter 2, we give the underlying abstract sequential al-

4

gorithm and specify and describe the distributed algorithm. In the distributed
algorithm the minimum–weight spanning tree (MST) is constructed as a grow-
ing “forest”.

In Chapter 3, the representation of the forest is distributed over the nodes of
the graph in such a way that it can grow. Chapter 4 contains the graph theory
needed for the algorithm. The Chapters 5, 6, 7 describe how the growing forest
fills the MST.

When the algorithm terminates the growing forest must have filled the MST.
Chapter 8 deals with the proof of that. Chapter 9 deals with the proof that the
algorithm indeed terminates. Since the algorithm is designed incrementally in
the Chapters 3 through 8, the resulting algorithm is presented in Chapter 10.
In Chapter 11, we compare the resulting algorithm with other version of the
GHS algorithm.

In Chapter 12, we describe how the mechanical theorem prover NQTHM of
Boyer and Moore serves as a witness for the correctness of the algorithm.

The main effort of the project was the construction of the global invariant,
which is a conjunction of about 160 universal quantifications of so-called con-
stituent invariants. It seems that none of these constituent invariants can be
omitted. We also need some 80 other predicates that follow from the global
invariant.

In Chapter 13, we draw some conclusions.
In Chapter 14, we present all constituent invariants and a selection of the

derived invariants, both for completeness and to give an honest picture of the
complexity involved. We would greatly prefer to have an easier proof or a more
elegant one.

Yet the number of constituent invariants is not more than should be ex-
pected. Not counting ghost variables, the algorithm has 11 private variables, 11
messages, and 12 parameters of messages. The invariants express relationships
between these 34 objects. Assuming that each object has one invariant to relate
it to each other object, we would get

(
34
2

)
= 595 invariants, much more than the

actual number 166.

1.2 Modelling asynchrony

We need to go into the modelling assumptions. Every process has a private
state consisting of a number of private variables. Processes can send messages
to neighbour processes. A process acts only when it accepts a message. Every
message has a key word and a number of arguments. Via the declaration of the
algorithm, the key word and the arguments determine the enabling condition of
the message and the associated command. Acceptance of a message is defined
to consist of its removal from the network together with the execution of its
command. The enabling condition is the precondition for acceptance. The
command can only inspect and modify private variables and send messages to
neighbour processes; it always terminates. All processes concurrently execute
the sequential program

5

while true do accept some enabled message or wait od .

The only fairness assumption is that, whenever the bag (multiset) of enabled
messages is nonempty, one will be accepted eventually.

We distinguish a physical model and a mathematical model. In the physical
model the acceptance of a message takes some time, and message acceptances
of different processes may overlap. The possibility and the effect of acceptance,
however, only depend on the message and the private state of the accepting
process prior to acceptance. Since the acceptance is finished before the process
can accept a next message and since the sending of messages only adds them to
the bag of messages in transit, we may regard the acceptance of a message as a
single atomic action and we may regard the atomic actions as interleaved.

In this way we arrive at the following mathematical model, a simple version
of the model of [Tel94]. The state of the system consists of the private states
of the processes together with the bag of messages that are in transit (sent,
but not yet accepted by the destination process). A transition of the system is
a step from one state to another in which a single process accepts an enabled
message. An execution of the algorithm is a sequence of transitions that starts
in some initial state. A state is called reachable if it occurs in an execution.

Since in every step of the system only one process is involved, this model of
concurrency is simpler than the models for synchronous communication. It may
even be simpler than the model with shared variables (compare [ApO91]). It
is related to the I/O automata of (e.g.) [Lyn89] and to the receptive processes
of [Jos92]. The model is more complex than UNITY, cf. [ChM88]. It may be
regarded as a special case of UNITY, but the command associated to a message
is typically much more complex than is usual in UNITY programs.

Remark. Instead of disabling, the paper [GHS83] allows processes to put the
message back at the end of the message queue. In this way the order of the
message queue becomes a complicating factor. We prefer to use disabling, and
to eliminate the order of the messages. Since we do not assume preservation of
the order of messages sent along one edge, the algorithm of [GHS83] is incorrect
in our setting (in spite of what is suggested in [Tel94]). It turns out, however,
that correctness can be re–established by a minor modification of the algorithm.

1.3 Invariants

An invariant is defined to be a predicate that holds in all reachable states. This
definition is not very practical. So, we need a proof theory to verify invariants.
We write P . Q to denote that every atomic step of the algorithm that starts
in a state where P holds, terminates in a state where Q holds. We define a
predicate P to be a strong invariant if it holds initially and satisfies P . P .
Note that Tel ([Tel94] page 51) uses the term invariant where we use the term
strong invariant. It is easy to see that every predicate implied by a strong
invariant is an invariant.

A stronger way to prove invariance of a predicate is to introduce ghost vari-
ables (auxiliary variables cf. [OwG76], p.325) and to prove that the predicate

6

follows from a strong invariant that may use these ghost variables. Actually,
we develop the algorithm in layers and decide in a final step of the design
that certain variables can be regarded as ghost variables, and therefore can be
eliminated from the algorithm. An invariant obtained for the algorithm with
ghost variables that does not mention the ghost variables, is also valid for the
algorithm without the ghost variables.

The usual way to obtain (strong) invariants is based on the following obvious
result.

Theorem. Let Q be the conjunction of a family of predicates Pi with i ∈ I.
Assume that Q holds initially and that Q . Pi for all i ∈ I. Then Q is a strong
invariant.

In such a situation, the predicates Pi follow from Q and are therefore in-
variants. Since they are used to construct a strong invariant, they are called
constituent invariants. We prefer to use constituent invariants that cannot eas-
ily be expressed as conjunctions of smaller expressions (although we do not fix
the language, such a predicate might be called irreducible).

For GHS we need a family of some 160 constituent invariants. The whole
strong invariant is not manageable. There may be many useful conjunctions
of constituent invariants. We found the only way to manage them was to list
the “irreducible” ones. (Even so, we sometimes invented invariants that later
turned out to be already there). Indeed, the main effort in the design was to
manage this host of invariants.

Remark. So we describe the global invariant of a system as a conjunction of
invariants. Instead of this, Amir Pnueli suggests to analyse the global invariant
as a disjunction of predicates, which can then be regarded as modes of the
system. For our algorithm, this approach seems not to be feasible.

1.4 Messages in transit

When we began to investigate the GHS algorithm, we had no idea what kind
of invariants to use. Since messages are transient, we did not expect them in
invariants. This turned out to be mistaken. For, in the end, most invariants
express a property of a node when a certain message is in transit to it or from
it.

For the formal description of the global state, we introduce variables buf .q
to hold the bag of messages in transit to process q. So, if process p sends a
message with key word kw and arguments a to node q 6= p, according to the
command send(q, kw , a), this has the effect

buf .q := buf .q + {(kw , a)} ,

where + denotes bag addition. Process q can accept any enabled message m ∈
buf .q. Acceptance of m has the effect that m is removed from buf .q, followed
by execution of the command associated to m.

We use two other sending commands. Firstly, a multicast to a set S of
destinations is expressed by mcast(S, kw , a), which is equivalent to

7

for all r ∈ S do send(r, kw , a) od .

Secondly, in order to allow a finer grain of atomicity and some separation of
concerns, we introduce the possibility that a process sends a message m to
itself by means of the command delay(m). The purpose of selfmessages is to
postpone the execution of an action until execution is appropriate. Since the
reasons to send and to delay are quite different, we take command send(p, kw , a)
for process p itself to be equivalent to skip. This makes some invariance proofs
easier.

In order to discuss the messages in transit, we introduce the notations

kw at q ≡ (∃ a :: (kw , a) ∈ buf .q) ,
(kw , j) at q ≡ (∃ b :: (kw , j, b) ∈ buf .q) ,

which express that some message is in transit to q with key word kw (and first
argument j, etc.). We write not-at for the negation of at. So u not-at q stands
for ¬(u at q). If we want to discuss the number of such messages instead of
the existence, the operator at is replaced by #. For example, (kw ,−, j)#q is
the number of messages in transit to q with key word kw and second argument
j. There is no condition on first or third arguments: this is convenient since
during the design the number of arguments of a message can grow.

Remark. In contrast to [GHS83], we assume point to point communication:
processes send messages to neighbour processes and edges are merely pairs of
neighbour nodes (the same is done in [WLL88]). In this way, we avoid channel
names, but we disallow multiple edges. It follows that the identity of the sender
is needed as an argument for some of the messages.

1.5 The role of the theorem prover

In the verified design of the algorithm we used the mechanical theorem prover
of NQTHM of Boyer and Moore, cf. [BoM88].

We need such a tool for three reasons. Firstly, the proof of invariance of
each of the constituent invariants requires meticulous case distinctions in which
NQTHM is much better than human beings. Secondly, we start with the verifi-
cation of a small algorithm (see Chapter 3) and extend the algorithm by gradu-
ally adding messages, private variables, and actions. For each extension, the old
proof is mechanically replayed to see whether and where it needs adaptation.
Thirdly, after having obtained invariance proofs for all constituent invariants,
we have to make sure that the hypotheses used as preconditions in these proofs
do follow from the invariants. Since, in the end, there are more than 160 con-
stituent invariants and more than 80 auxiliary invariants, automation of this
administrative task is indicated.

This host of invariants also makes the first reason more compelling. Indeed,
each proof of invariance of a constituent invariant can be done by hand (and of-
ten has been done so), but after 160 proofs the accumulated probability of errors
becomes threatening. It was for this reason that we started to use NQTHM.
The second and third reason occurred to us during the project.

8

We also use NQTHM to verify the graph theory needed for the algorithm.
Alternatively, one may suggest to introduce the results of the graph theory as
a set of axioms but we regard this as unadvisable. It is dangerous to introduce
axioms, however likely, into such a proof because of the possibility of inconsis-
tency. Especially for NQTHM axioms are very risky: NQTHM is untyped, so it
is easy to introduce inconsistencies since functions can be applied to unexpected
arguments.

The tool NQTHM is called a theorem prover, not a proof checker. Indeed, it
has abilities to prove lemmas that can be compared with those of a meticulous
but not very gifted undergraduate student. Of course, being a tool, NQTHM is
not creative or able to formalize informal arguments. Therefore, from the global
point of view, NQTHM serves as a proof checker rather than as a theorem prover.

When one has performed a proof with NQTHM, one usually understands
the proof much better than after a handwritten proof, since NQTHM needs
assistence precisely at those points where the proof deviates from standard proof
heuristics (similarly as that teaching a subject is a good way to learn it).

This paper is not intended as an introduction to the theorem prover NQTHM
(we rather refer to [BoM88]), not even as an introduction to our use of NQTHM
for asynchronous distributed algorithms. For that purpose we refer to [Hes97a].
In the present paper NQTHM only serves as a tool for the design of the al-
gorithm, and as a witness for its correctness. The input to the prover is an
additional source that can be inspected. It is very reliable but not very acces-
sible. See Chapters 12 for more details.

We do not claim that NQTHM is the best tool for our purposes. We only
state that NQTHM served us well. Perhaps most importantly, NQTHM is
believed to be sound. Secondly, and of almost equal importance, NQTHM
is able to prove the easy lemmas without user guidance. For us, NQTHM’s
untyped logic and its LISP-like syntax are easy enough to work with. We
completely agree with the argument of [You97] 6.1, that such syntactic issues
are a relatively minor concern for serious users of automated proof tools. We
feel no need for a better user interface.

We regard NQTHM’s lack of higher order functions as its main shortcoming.
This lack is compensated, however, by on the one hand the simplicity of the
logic, and on the other hand the possibilities to constrain, to functionally

instantiate, and to interpret quotations of terms by means of the NQTHM
function eval$. It may be noted that the last feature is no longer present
NQTHM’s successor ACL2, see [KaM97], and also that, in [You97], it is argued
that in many proof projects higher order functions are not really needed and
are therefore better eliminated in the specification stage.

9

2 Introduction to the algorithm

In this chapter we first describe the problem and an abstract sequential algo-
rithm that solves it. We then turn to the question of distribution. In particular
we give the specification of the distributed algorithm. Finally, we give a global
sketch of the incremental simultaneous design of the algorithm and its proof.
The graph theoretical assertions in this chapter will be discussed more exten-
sively in Chapter 4.

2.1 The abstract algorithm

Let (V,E) be a connected undirected graph without selfloops. So V is the set
of nodes (vertices) and E is the set of edges (pairs of nodes). The edges have
numerical weights given by a function w on E.

Following [GHS83], we postulate that all edges have different weights. Then
the graph has a unique minimum–weight spanning tree.

There are various ways to formalize minimum–weight spanning trees. For
our purpose (the construction of a mechanical proof), the most convenient way
is to define MST as the set of the edges that have no connection through lighter
edges. The formal definition is given in Section 4.2. It is easy to see that every
edge in a minimum–weight spanning tree belongs to this set MST. On the other
hand, since all weights differ, the set MST contains no cycles, see Theorem 1
in Section 4.2. Therefore, MST is the minimum–weight spanning tree of the
graph. It is because of this definition of MST that distributed determination of
MST needs no central supervisor.

The algorithm is a distributed version of Boruvka’s algorithm, cf. [Tar83].
The basic idea is the same as in the algorithms of Kruskal and Prim, see [CLR90].
In the algorithm, the elements of MST are determined by means of the following
result. We define an outgoing edge of a set C of nodes to be an edge (x, y) with
x ∈ C and y /∈ C. A lightest outgoing edge of C is an outgoing edge of C with
the smallest weight. It is easy to verify (see Section 4.2), that

Theorem 3. A lightest outgoing edge of any set of nodes belongs to MST.

This result is used in the algorithm to construct MST as a growing forest F .
So we introduce the invariant F ⊆ MST. Boruvka’s algorithm uses Theorem 3
with for the set of nodes a connected component of forest F . This sequential
algorithm is given by

F := ∅ ; stop := false ;
while ¬stop do

choose v ∈ V ;
C := {x | (v, x) ∈ F ∗} ;
if possible let (x, y) be

a lightest outgoing edge of C ;
F := F ∪ {(x, y), (y, x)}

else stop := true fi
od .

10

Here F ∗ is the reflexive transitive closure of relation F . So the assignment to
C makes C the connected component of node v. Upon termination, the set C
has no outgoing edges. Since C is nonempty and (V,E) is connected, it follows
that C equals V , so that (v, x) ∈ F ∗ for all nodes x. Since MST is a tree and
F ⊆ MST, this implies F = MST (see Corollary of Theorem 2 in Section 4.2).

Notice that we do not need the specific form of C to preserve the invariant
F ⊆ MST. In the distributed algorithm we use two other kinds of sets C.
Firstly, since the graph has no selfloops, the lightest incident edge of a node
q always belongs to MST; here we use the set of nodes {q}. Secondly, we use
the set {x | (v, x) ∈ JB∗}, where JB is a subset of F . Actually JB is a delayed
version of F : the elements of F become elements of JB when some messages
are accepted.

2.2 Distribution and specification

Now the algorithm is distributed in such a way that the nodes of the graph are
processes that communicate by means of asynchronous messages to neighbours
in the graph. The algorithm treats all nodes of the graph in the same way. We
assume that all actions of the processes are triggered by messages. Therefore,
we also assume that initially there is a wakeup message in transit to every node.
The model does not guarantee that this wakeup message is the first message to
be expected.

Initially, every node only knows its neighbours in the graph and the weights
of the edges to these neighbours. Finally, every node knows which incident edges
belong to MST.

Distribution of the algorithm means distribution of the variables F and stop,
and distribution of the actions: the choice of a lightest outgoing edge of a
component, and the corresponding modifications of F and stop.

Since F is to be a forest, it can be represented as a set of rooted trees. It is
therefore distributed among the nodes by means of private variables that point
to “parent” nodes. More precisely, we introduce for each node q ∈ V a private
variable ib.q of process q and we let F be the state dependent relation on nodes
given by

(F0) (x, y) ∈ F ≡ x 6= y ∧ (ib.x = y ∨ ib.y = x) .

Variable ib corresponds to the variable in-branch of [GHS83]. We postulate that
ib.q = q holds initially for all nodes q ∈ V . Therefore F = ∅ holds initially.

The purpose of the algorithm is that eventually every node knows which
incident edges belong to MST. Since ib can hold only one neighbour, we give
every node q a private variable branch.q with the properties

r ∈ branch.q ⇒ ib.r = q ,
ib.q /∈ branch.q .

If we regard ib.x as the father of x, then branch.x is the set of known children
of x.

11

The variable stop of Boruvka’s algorithm is distributed by giving each node
q a private variable term.q (for terminated) such that term.q implies that all
nodes r know which incident edges belong to MST. This is expressed in the
invariant

(Goal) term.q ⇒ ((r, s) ∈ MST ≡ s ∈ {ib.r} ∪ branch.r) .

Initially, term.q is false for all nodes q. The objective is to preserve (Goal)
and to prove that after a finite number of accepted messages there are no more
messages in transit and term.q holds for all nodes q. The complete specification
of the algorithm is as follows.

1. Predicate (Goal) is an invariant.

2. When all messages are disabled, term.q holds for all nodes q.

3. If term.q holds, all messages in transit to process q are enabled and equiv-
alent to skip: process q accepts them and does nothing.

4. After a bounded number of atomic steps all messages are disabled.

Point 2 expresses local termination detection and the absence of deadlock. Ac-
cording to point 3, term.q indeed expresses termination of node q. It follows
from 2 and 3 that, when all messages are disabled, there are no messages in
transit anymore. Termination of the algorithm is expressed by point 4.

This concludes the specification of the distributed algorithm. It differs
slightly from the description in [GHS83], where processes can wake up spon-
taneously or upon receiving messages from awakened neighbours. Moreover, we
treat termination detection more explicitly.

2.3 Global description of the verified design

The verified simultaneous design of the algorithm and its proof mainly consists of
a stepwise introduction and modification of messages with associated commands,
in alternation with the introduction of invariants and proofs of invariance of
predicates.

The invariants come in two flavours: constituent invariants and invariants
that follow from other invariants. A priori, it is never known whether some
invariant eventually will follow from other invariants. As a first guess we treat a
new invariant as a constituent invariant unless we have reason to postpone the
proof of invariance.

For the sake of brevity, we give in this paper only the outcome: the con-
stituent invariants can be recognized from their names. They get names of the
form (Jq0) where the J may be replaced by another capital and the 0 by another
natural number. The capital serves to group the constituent invariants together
in families of related predicates. These groups have no formal meaning, but only
serve as a reminder of the stage (layer) where the invariant was introduced.

12

After the initialization, the abstract algorithm of Section 2.1 is a repetition
of two actions: the determination of the lightest outgoing edge of a component
and a corresponding extension of the forest. Since the forest is needed to de-
termine components, we start in Chapter 3 with the design of a distributed
data structure for the forest together with the means to modify it. For the
latter purpose we introduce messages wakeup, connect, change, and a family of
constituent invariants (Jq0) up to (Jq13). At this level, we also postulate four
goal-directed constituent invariants (Iq0) up to (Iq3).

The actions of every component will be coordinated by a special pair of
nodes, called the core of the component, see Chapter 3. We develop some special
purpose graph theory in Chapter 4. In Chapter 5, we introduce private variables
ll, fnd, ci and a message init to hold and distribute component information,
generated at the core. Here we obtain constituent invariants in families (Kq)
and (Lq), which are partly motivated by the results in Section 4.3.

In Chapter 6 we treat the task of the nodes of a component to search for
the minimum weight outgoing edge. We first introduce messages report from
the nodes of a component to its core, governed by a selfmessage sendrep, and
a family of invariants (Mq). In order to determine the lightest outgoing edge,
we introduce in Section 6.2 the possibility that a node of a component com-
municates with its neighbours to decide which neighbours belong to its own
component. For this purpose we introduce messages ask and answer, a selfmes-
sage search, and families of invariants (Nq) and (Oq).

In Chapter 7, the reports to the core are used to decide whether and where
the forest must be extended, according to families (Pq), (Qq), and (Rq). The
graph theory developed in Chapter 4 is used in Section 7.4 to ensure that the
local decisions are globally correct. Here we prove the invariance of (Goal), our
first proof obligation. We then also implement the decision at the core that
the algorithm may terminate. We introduce messages halt to broadcast this
decision, and invariants (Sq) to guarantee the correctness.

Chapter 8 is devoted to the situation where all messages are disabled. Our
second proof obligation is to show that then every node q has term.q. Most
cases of deadlock can be eliminated without modifying the algorithm, by means
of a family of invariants (Tq). One specific source of deadlock, however, requires
the introduction of the message winit with an associated family of invariants
(Uq). Some more graph theory is needed together with a family (Vq) to finally
settle the second proof obligation, in Section 8.7.

In Section 8.8, we perform a small program transformation to reduce some
program variables to ghost variables by means of an invariant (Wq0). We use
the remainder of the family (Wq) to settle the third proof obligation that every
terminated node ignores all incoming messages, see Section 8.9.

For the fourth proof obligation (termination), we construct in Chapter 9 a
variant function vf together with a family (Xq) to ensure that vf decreases with
every step of the algorithm.

In Chapter 10, we present the resulting algorithm. It contains eleven private
variables, four private ghost variables, and eleven messages: wakeup, connect,
change, init, report, sendrep, ask, answer, search, halt, winit. Chapter 11

13

contains a comparison of our algorithm with the version of [GHS83] and a com-
parison of our approach with the one of [WLL88].

Chapter 12 describes some aspects of the mechanical proof, in particular as
a witness for the correctness of the algorithm. The ideas and methods used to
construct the proof are largely neglected.

An important function of the mechanical proof is book-keeping. In fact, in
the proof of invariance of each of the constituent invariants, we use the hypoth-
esis that a number of invariants holds in the precondition. With more than 160
invariants around there is the danger that one of them is used in some precon-
dition but not proved to be invariant. In the mechanical proof we deal with
this danger by constructing a predicate that is the conjunction of the universal
quantification of all constituent invariants and by proving that it is, indeed, a
strong invariant: it holds initially and is preserved under every step.

The algorithm as developed up to this point still contains four ghost vari-
ables. These are needed to express the global invariant, but, by inspection, are
easily seen to be irrelevant for the computation. The last stage of the mechani-
cal proof is the elimination of these ghost variables. This is described in Section
12.3.

3 Forest maintenance

In this chapter, we treat the modifications of forest F as it is represented by the
pointer variables ib via formula (F0). In view of (F0), the invariant F ⊆ MST
mentioned above is expressed for the distributed algorithm as

(Iq0) ib.q = q ∨ (q, ib.q) ∈ MST .

An immediate corollary of Theorem 3 is that the lightest incident edge of a node
always belongs to MST. The determination of this edge requires no coordination
between different nodes. The first action of each node q can therefore be to set
ib.q equal to its nearest neighbour. This action will be triggered by the message
wakeup. Recall that, initially, a wakeup message is in transit to every node of
the graph.

During the algorithm the variables ib will be modified while preserving pos-
tulate (Iq0), in such a way that eventually F as given by (F0) satisfies F = MST.
In most cases, a modification of ib.q would have the effect that one edge in F
is replaced by another. Since we do not want to lose edges of F , we decide to
modify ib.q only under the precondition ib.(ib.q) = q. In fact, this is precisely
the condition that no edge of F is lost.

The condition ib.(ib.q) = q holds in two cases. The first case is ib.q = q.
Then we say that node q is sleeping. After the acceptance by q of a first wakeup
message, this will never be the case. In the other case, there is a pair of different
nodes q and r with ib.q = r and ib.r = q. Such a pair is called a core. In that
case, either companion can dissolve the core by modifying its variable ib.

Using (F0) and the invariant that F is a forest, one can easily see that every
component of F has a unique pair of nodes q and r with ib.q = r and ib.r = q.

14

Let us assume that node q has accepted a wakeup message. Then we have q 6= r,
i.e., the pair is a core. In Boruvka’s algorithm, the set F is extended with the
lightest outgoing edge of a component. Since we can modify relation F only at
a core (or at a sleeping node), the core of a component must be moved to the
lightest outgoing edge. This action will be triggered by the message change.

Whenever a node q modifies its variable ib by setting ib.q := r, it sends a
message to r as a notification. There are two cases depending on the set variable
branch introduced above. If r ∈ branch.q, process q knows that ib.r = q. So by
setting ib.q := r it establishes a core (q, r). Process r thus gets the possibility
to modify its variable ib.r. In this case, process q sends a change message to r.

Alternatively, process q may set ib.q := r while not knowing whether ib.r =
q. Then the action of q seems to form a new connection between trees in the
forest F . Node q then sends a connect message to r. The three messages
wakeup, change, and connect form the first layer of the algorithm.

3.1 The first three messages

We first treat the message wakeup. If a sleeping node q accepts a wakeup
message, it sets ib to its nearest neighbour. This neighbour is kept in the
variable be, which stands for best-edge, see [GHS83]. Since node q apparently
extends forest F by setting ib.q := r, it sends a connect message to r with its
own name as argument. Therefore, as a first approximation, message wakeup is
declared by

accept (wakeup) =
• if ib = self then

ib := be ;
send(be, connect, self)

fi
end .

The bullet serves to separate the enabling condition from the command, but
we omit the enabling condition here since message wakeup is always enabled.
The variables mentioned are the private variables of the accepting process and
self is the name of the accepting process. The test ib = self tests whether the
accepting process is sleeping. It follows that a wakeup message at a nonsleeping
node is ignored.

As announced above, we introduce a private variable branch with the inten-
tion that branch.r is the set of the nodes q 6= ib.r for which process r “knows”
that r = ib.q. So branch.r holds the known children of node r. This leads to
the invariant

(Jq0) q ∈ branch.r ⇒ ib.q = r .

It would be nice to have equivalence instead of implication in (Jq0), but then
modification of ib.q would require simultaneous modification of branch.r and
this is impossible. As a partial inverse of (Jq0), we postulate

15

(Jq1) q ∈ branch.(ib.q) ∨ (connect, q) at ib.q ∨ ib.(ib.q) = q .

The third alternative expresses that q is sleeping or belongs to a core. Since we
do not want to regard a parent as a child, we postulate

(Jq2) ib.q /∈ branch.q .

In order to preserve (Jq2) when node q accepts wakeup, we postulate that a
sleeping node has no known children:

(Jq3) ib.q = q ⇒ branch.q = ∅ .

When a connect message is accepted, the receiver should add the sender to its
set branch, unless the sender equals ib. In view of (Jq3), node q should not
accept a connect message when ib.q = q. As a first approximation we therefore
declare

accept (connect, j) =
enabling ib 6= self

• if j 6= ib then branch := branch ∪ {j} fi
end .

In order to preserve (Jq0) when node q accepts a connect message, we postulate
the invariants

(Jq4) (connect, q) at r ⇒ ib.q = r ,
(Jq5) (connect, q) not-at q .

These invariants are inspired by the design decision that the first argument of
a connect message is always the name of the sender. Predicate (Jq5) is needed
to preserve (Jq4) when q accepts wakeup.

If there are no sleeping nodes, extension of forest F must happen at a core.
This is accomplished by message change, which moves the core, or dissolves it
while extending F .

accept (change) =
• if be ∈ branch then send(be, change)

else send(be, connect, self) fi ;
branch := (branch ∪ {ib}) \ {be} ;
ib := be

end .

As announced above, we postulate that message change is always at a core, as
expressed in the invariants

(Jq6) change at q ⇒ ib.q 6= q ,
(Jq7) change at q ⇒ ib.(ib.q) = q .

Execution of change by q destroys this core by resetting ib.q. If be.q ∈ branch.q,
it follows from (Jq0) that (q,be.q) becomes a new core with a new change
message at be.q. So the situation

16

��
��

��
��

��
��

p q r
-

�
-

�

ib

ib

be

ib
change

becomes

��
��

��
��

��
��

p q r-
-
-

�

ib
ib

ib
change

In other words, the message change pulls the core along the path of be–arrows.
This process will be used in other layers to move the core to the lightest outgoing
edge of the component.

On the other hand, if be.q /∈ branch.q, then the core dissolves and a connect
message is sent. Therefore, the situation

��
��

��
��

��
��

p q r
-

�
-

ib

ib
be

change
becomes

��
��

��
��

��
��

p q r-
-
-

ib
ib

be
connect

We could combine (Jq6) and (Jq7) into one predicate, but we don’t do this,
since that would have the drawback that in later applications of this invariant
it would not be clear which of the two consequents is relevant.

Indeed, (Jq0) is preserved when p 6= q accepts change because of (Jq7). It is
preserved when q accepts change because of (Jq2), (Jq6), and (Jq7). Predicate
(Jq1) is preserved by change because of (Jq0). Predicate (Jq2) is not threatened
by change. Predicate (Jq3) is preserved by change if we postulate

(Dld0) be.q 6= q .

Treatment of (Dld0) is postponed (delayed), since this predicate will later follow
from another constituing invariant.

3.2 Some additional invariants

Predicate (Jq4) is preserved by change if we postulate

(Jq8) change at q ⇒ (connect, q) not-at r .

17

Indeed, if one submits preservation of (Jq4) as a lemma to the theorem prover,
the need for an invariant like (Jq8) is immediately apparent. It is up to the
human designer to guess a predicate (Jq8), which can be kept invariant in the
remainder of the design.

We now want to ensure that acceptance of wakeup, connect, and change
preserves the predicates (Jq6), (Jq7), and (Jq8). Predicate (Jq6) is threatened
only by change. It is preserved by change because of (Jq0) and (Dld0). Predicate
(Jq7) is threatened when p 6= q accepts change and when q accepts wakeup or
change. It is preserved when q accepts wakeup because of (Jq6), and when q
accepts change because of the new postulate

(Jq9) change#q ≤ 1 .

In fact, this implies that acceptance of change by q gives the postcondition that
change is not at q. Predicate (Jq7) is preserved when p 6= q accepts change
because of (Jq0) and the new postulate

(Jq10) change at q ⇒ change not-at ib.q .

Predicate (Jq8) is threatened when p 6= q accepts change and when q accepts
wakeup and change. It is preserved when q accepts wakeup because of (Jq6).
It is preserved when q accepts change because of (Jq9). It is preserved when
p 6= q accepts change because of (Jq0), (Jq4), and the new postulate

(Jq11) (connect, r) at q ⇒ r /∈ branch.q .

We turn to the preservation of (Jq9), (Jq10), and (Jq11). Predicate (Jq9)
is preserved because of (Jq0) and (Jq10), while (Jq10) is preserved because
of (Jq0), (Jq7), and (Jq9). Predicate (Jq11) is preserved when p 6= q accepts
messages because of (Jq0), (Jq2), and (Jq7). It is preserved when q itself accepts
messages because of the new postulates

(Jq12) change at q ⇒ (connect, ib.q) not-at q ,
(Jq13) (connect, r)#q ≤ 1 .

Predicate (Jq12) is preserved because of (Jq0), (Jq6), (Jq7), (Jq8), (Jq9), and
(Jq10). Predicate (Jq13) is preserved because of (Jq4) and (Jq8). Details con-
cerning these proofs can be found in the mechanical proof at [Hes@].

In this way, in the effort to prove the invariance of (Jq0), (Jq1), (Jq2), we
have generated fourteen invariants, (Jq0) up to (Jq13), which form the bottom
layer of the design. This bottom layer contains all modifications of the private
variables ib and branch. The remainder of the algorithm is concerned with the
value of be and the emergence of change messages. In the subsequent layers the
declarations of wakeup and change are extended slightly, but the declaration of
connect grows to more than half a page.

3.3 Goal directed invariants

We now come back to the main safety invariant (Iq0). It is clear that (Iq0)
is only threatened when process q accepts a message wakeup or change. By

18

inspection of the declarations of wakeup and change, one sees that predicate
(Iq0) is preserved by these messages if we postulate

(Iq1) ib.q = q ⇒ (q,be.q) ∈ MST ,
(Ch-M) change at q ∧ be.q /∈ branch.q ⇒ (q,be.q) ∈ MST .

Preservation of (Iq0) when be.q ∈ branch.q and q accepts change, follows from
(Jq0).

Since the purpose of a change message is to modify ib, it is erroneous when
process q accepts change while ib.q = be.q. We therefore postulate

(Iq2) change at q ⇒ be.q 6= ib.q .

If process q accepts wakeup or change, it sends a message to be.q. We therefore
need to know that there is an edge from q to be.q. So we postulate

(Iq3) w.(q,be.q) <∞ .

By the convention about w, predicate (Iq3) implies (Dld0). We shall treat
the invariance of (Iq1), (Iq2), and (Iq3) when modifications of be have been
introduced. Predicate (Ch-M) will follow from other invariants.

Now the main task of the algorithm is to create enough change messages
and (yet) to guarantee validity of (Iq1), (Iq2), (Iq3), and (Ch-M). At a later
stage, we also have to prove the invariance of (Goal), to detect termination, and
to create halt messages.

Remark. In [GHS83], the message Change-root (our message change) does not
reset variable in-branch, which is our ib. Yet, on page 72 of [GHS83], it is
stated that the message Change-core has the effect that “the inbound edge
. . . is changed to correspond to best-edge”. This suggests that the version of
[GHS83] in which in-branch is modified by Initiate is due to a late program
transformation. For us, the realization that message change, rather than init,
should modify ib was the breakthrough that enabled us to construct the layered
proof.

4 Graph Theory

In this chapter we formalize the main graph theoretical concepts and results
that are used in the proof of the algorithm. All theorems mentioned below have
been proved mechanically, though not always in the way described here.

4.1 Reflexive transitive closures and graphs

For any binary relation R, we write R∗ to denote the reflexive transitive clo-
sure. We first record a triviality, which is yet so fundamental that it is worth
mentioning.

19

Theorem 0. Let R be a binary relation on a set V . Let ϕ be a boolean function
on V that satisfies ϕ.x⇒ϕ.y for all pairs (x, y) ∈ R. Then ϕ.x⇒ϕ.y for all
pairs (x, y) ∈ R∗.

It is not hard to prove this result on our theorem prover, but the prover has no
heuristics to guess such a result as a subgoal for other theorems. Whenever we
use this result, we do so by means of this theorem with some instantiation for
R and ϕ.

If R is a binary relation, an R–path from q to r is defined to be a sequence
(x0, . . . , xk) with k ≥ 0 and q = x0 and r = xk, and (xi, xi+1) ∈ R for all
0 ≤ i < k. The number k is called the length of the path. The path is called
simple if all elements xi differ. A pair (q, r) belongs to R∗ if and only if there
exists a simple R–path from q to r.

For our purposes, an undirected graph has no self-loops and no multipe
edges. So it can be modeled as a pair (V,E) where V is the finite set of nodes
and E is a binary relation on V with

(q, r) ∈ E ⇒ q 6= r ∧ (r, q) ∈ E .

The graph is said to be connected if relation E∗ holds for all pairs of nodes.
A subgraph of graph (V,E) is a subset F ⊆ E such that (V, F) is a graph.

The subgraph is called spanning if the graph (V, F) is connected. A subgraph
is called a spanning tree if it is spanning and has no cycles.

In a weighted undirected graph, every edge has an associated weight, which
is a real number given by a function w ∈ E → R. Since the graph is undirected,
we assume that the weight function is symmetric, i.e., that w.(x, y) = w.(y, x)
for all nodes x and y. In order to eliminate the set E from our considerations
we extend w to a function V × V → R ∪ {∞} by defining

w.(x, y) =∞ ≡ (x, y) /∈ E .

For all nodes x we have w.(x, x) =∞, since the graph has no selfloops.

4.2 Minimum–weight spanning subtrees

The weight of a subgraph F is defined as the sum of the weights of the edges in
F . Clearly, every connected graph has at least one spanning subtree of minimum
weight.

If different edges may have equal weights, the graph may have more than
one minimum-weight spanning subtree. In that case every algorithm for the
distributed determination of a minimum-weight spanning tree would have some
kind of consensus problem. Consider, for example, the case of four vertices in
a rectangle with sides of different lengths (weights): there are two minimum-
weight spanning trees, but a symmetric deterministic algorithm cannot make
the choice.

Following [GHS83], we postulate that all edges have different weights, in
other words that, for all nodes q, r, x, y,

20

(A0) w.(q, r) = w.(x, y) <∞ ⇒ (q, r) = (x, y) ∨ (q, r) = (y, x) .

Finally we postulate that the graph is connected, i.e., that (x, y) ∈ E∗ for all
nodes x, y.

There are many ways to formalize the concept of minimum–weight spanning
tree. In view of our goal to construct a mechanical proof, we have chosen to
define relation MST as the set of the edges that have no connection through
lighter edges. So, it is formally defined by

(G0) (q, r) ∈ MST ≡ (q, r) ∈ E ∧ (q, r) /∈ H.(q, r)∗ ,

where H.(q, r)∗ is the reflexive transitive closure of relation H.(q, r) given by

(x, y) ∈ H.(q, r) ≡ w.(x, y) < w.(q, r) .

We first prove that MST is a forest:

Theorem 1. Let (q, r) ∈ MST. Then every simple MST–path from q to r has
length 1.

Proof. Suppose not. Then the subgraph MST contains a cycle, i.e., a path from
some node to itself that consists of different edges. Since all edges in E have
different weights, the cycle has a unique edge of maximal weight, say (q, r). It
follows that q and r are connected by the remainder of the cycle, which consists
of edges of weight less than w.(q, r). This implies (q, r) ∈ H.(q, r)∗ and hence
(q, r) /∈ MST, a contradiction. 2

The theorem is phrased without the concept of cycles since this concept is not
used in the mechanical proof, and also since it is not useful for the application,
which is the next theorem.

The result implies that MST is a subforest of the graph. Now it is not hard
to argue that, if the graph is connected, MST is the unique minimum–weight
spanning tree. These arguments have not been formalized, however, in the
mechanical proof. We regard the determination of MST as it is defined here, as
the goal of the algorithm.

In the proof of the algorithm, we need the following corollary.

Theorem 2. Let R be a binary relation on V with R ⊆ MST. Then R∗∩MST ⊆
R.

Proof. Let (q, r) ∈ R∗∩MST. Then there is a simple R–path from q to r. Since
R ⊆ MST, this path is an MST–path. Theorem 1 implies that the path has
length 1. This yields (q, r) ∈ R. 2

Corollary of Theorem 2. Let R ⊆ MST be spanning. Then R = MST.

Proof. This follows from Theorem 2, since all pairs belong to R∗. 2

Membership of MST is proved by means of the following criterion

21

Theorem 3. Let (q, r) ∈ E and let f be a function on V such that f.q 6= f.r
and that f.x = f.y for all pairs x, y with w.(x, y) < w.(q, r). Then (q, r) ∈ MST.

Proof. By Theorem 0, function f is constant on the components of the graph
H.(q, r). Therefore, f.q 6= f.r implies (q, r) /∈ H.(q, r)∗. This proves (q, r) ∈
MST. 2

Corollary of Theorem 3. Let q, r ∈ V be such that r is a nearest neighbour
of q (i.e. that w.(q, r) ≤ w.(q, x) for all x ∈ V). Then (q, r) ∈ MST.

Proof. For all pairs x, y, we have

w.(x, y) < w.(q, r) ⇒ x 6= q ∧ y 6= q .

Therefore Theorem 3 applies with f ∈ V → B given by f.x = (x 6= q). 2

In the proof of the algorithm we also need the following result. Let h ∈ V →
V be a function. As usual, hn.x is defined by h0.x = x and hn+1.x = h.(hn.x).
So hn.x is the result of n subsequent applications of h to x.

Theorem 4. Let v ∈ V . Assume that (hi.v, hi+1.v) ∈ MST for every number
i with hi.v 6= hi+1.v. Then there exists a number n such that hn+2.v = hn.v.

Proof. Since V is a finite set, there are natural numbers p > 0 and n such
that hn+p.v = hn.v. Moreover, we may assume that p is minimal, i.e., that
hn+i.v 6= hn.v for all i with 0 < i < p. This assertion is sometimes called
the figure–six theorem (the mechanical proof is quite an effort since it involves
counting the set V in different ways).

If p = 1 then hn+1.v = hn.v and hence hn+2.v = hn.v. So, assume p > 1.
Using induction we get hm+p.v = hm.v for all m ≥ n. We also get hn+i.v 6=
hn+j .v for all i, j with 0 ≤ i < j < p. So, the vertices ai = hn+i.v with 0 ≤ i < p
form a simple MST–path from a0 to ap−1. We also have (a0, ap−1) ∈ MST. Now
Theorem 1 implies that p = 2. 2

4.3 Components of a forest

Distribution of the algorithm creates two problems: the global state is dis-
tributed so that local modifications are not known elsewhere, and control is
distributed so that coordinated action requires some kind of consensus between
processes.

According to the above analysis the subgraph F is always a forest. So the
connected components of (V, F) are trees. We organize coordination in these
trees by making them into directed trees. Now the choice of a root node within
a tree would introduce a consensus problem if the tree has more than one node.
Therefore trees with more than one node are directed towards a special edge,
the core. The determination of a core also gives a consensus problem, but now
the weight function on the edges can be used to break the symmetry.

22

Let us assume that the set V is made into a forest by means of a function
g ∈ V → V , which serves as an abstraction of (a variation of) the private
variables ib. We regard g.q as the parent of q unless g.(g.q) = q.

Analogously to (F0), function g induces a symmetric binary relation G given
by

(G1) (q, r) ∈ G ≡ q 6= r ∧ (q = g.r ∨ r = g.q) .

One can verify that condition (G1) implies that each connected component of
G has at most one cycle.

The connected components of graph G are the equivalence classes with re-
spect to the reflexive transitive closure G∗ of G. We claim that

(G2) (q, r) ∈ G∗ ≡ (∃ m,n ∈ N :: gm.q = gn.r) ,

where as usual gm.x is the result of m subsequent applications of function g to
x. As for the claim, it is easy to see that the righthand side of (G2) defines
an equivalence relation, which implies G∗ and is implied by G. Since G∗ is the
strongest equivalence relation implied by G, this proves formula (G2).

One of the main tasks in the algorithm is that each connected component of
G should determine an outgoing edge of minimal weight. So, every node should
enquire whether its neighbours belong to the same component. Therefore, all
nodes get a private variable cc to hold the current component identity. Upon
creation of a new component, a new component identity will be created and
broadcast through the component. In order to decide that the value of cc is
sufficiently recent, we add a version number ll (for level). In order to indicate
that a node should be active in looking for outgoing edges we add a boolean
variable fnd (for finding).

In a given global state of the system, the private variables fnd, ll, and cc
may be regarded as functions fnd ∈ V → B, ll ∈ V → N, and cc ∈ V → W ,
where W is the set of component names. It is the intention that we have

(G3) cc.q = cc.r ⇒ (q, r) ∈ G∗ .

The converse implication cannot be expected since it takes a number of steps to
transfer the component identity from the core of the component to the outskirts.
In Theorem 5 below, however, we give a kind of converse implication.

It will turn out that, roughly speaking, each node q obtains its component
identity together with the level and the indication to find an outgoing edge from
its parent g.q. This may suggest the antecedents of the following result.

Theorem 5. Assume that we have, for all nodes q :

(a) ll.q ≤ ll.(g.q) ,
(b) ll.q = ll.(g.q) ⇒ cc.q = cc.(g.q) ,
(c) fnd.q ⇒ ll.q = ll.(g.q) ,
(d) fnd.q ⇒ fnd.(g.q) ∨ g.(g.q) = q .

Then it follows that, for all q, r ∈ V ,

23

(q, r) ∈ G∗ ∧ (fnd.q ∨ g.(g.q) = q)
⇒ ll.r ≤ ll.q ∧ (ll.r = ll.q⇒ cc.r = cc.q) .

Proof. We define the (lexical coupling) relation v by

x v y ≡ ll.x ≤ ll.y ∧ (ll.x = ll.y ⇒ cc.x = cc.y) .

It is easy to see that relation v is reflexive and transitive. So it is a preorder.
The formulae (a) and (b) imply that x v g.x for every x. We define the boolean
function ϕ on V by ϕ.x = (fnd.x ∨ g.(g.x) = x). It follows from (a), (b), (c),
and (d) that, for every x,

(*) ϕ.x ⇒ g.x v x , and
ϕ.x ⇒ ϕ.(g.x) .

Now consider q and r with ϕ.q and (q, r) ∈ G∗. Using induction we get r v gn.r
for all n ∈ N. Using induction and the two formulae at (*), we also get gm.q v q
for all m ∈ N. Since (q, r) ∈ G∗, it follows from (G2) that there exist m and n
such that

r v gn.r = gm.q v q .

This implies r v q, whence the assertion. 2

Remark. The antecedents, in particular condition (d), are highly unintuitive.
Yet this theorem is an essential ingredient of our proof of the algorithm. The
four antecedents are crucial invariants that cannot be strengthened. 2

The final result of this chapter is a kind of strengthening of Theorem 0 in
the situation of graph G given by function g. This result will be used in Section
7.4 to show that, if the core members of a component are exchanging report
messages with best-weight values bw ≥ v, then all nodes of the component have
bw ≥ v.

Theorem 6. Assume that predicate ϕ satisfies for all nodes q:

g.(g.q) /∈ {q, g.q} ∧ ϕ.(g.q) ⇒ ϕ.q .

Let p ∈ V be such that

g.(g.p) = p ∧ g.p 6= p ∧ ϕ.p ∧ ϕ.(g.p) .

Then every node q ∈ V satisfies (p, q) ∈ G∗ ⇒ ϕ.q .

Proof. By induction in n, and using g.(g.p) = p and g.p 6= p, we first prove

gn.q ∈ {p, g.p} ∧ g.(g.q) = q ⇒ q ∈ {p, g.p} ,
gn.q ∈ {p, g.p} ⇒ g.(g.q) 6= g.q .

Using this and the assumptions about ϕ, we prove by induction in n that gn.q ∈
{p, g.p} implies ϕ.q. Then the assertion follows from (G2). 2

24

5 Connected components of a changing graph

We come back to the distributed algorithm. According to Section 2.1, every
component has the task to determine its lightest outgoing edge. For this pur-
pose the nodes of a component must decide whether neighbours belong to the
same component. The question whether nodes belong to the same component,
however, can be influenced by actions of other nodes. So we need invariants to
prove that the decision is taken correctly.

For this purpose we introduce private variables and state functions that
satisfy the antecedents of Theorem 5 of Section 4.3. We found these conditions
as the strongest predicates that we could keep invariant, but a presentation
of the design where these predicates emerge as invariants before being used as
antecedents in Theorem 5, was less satisfactory.

Remark. In the remainder of this paper we silently skip most of the proofs of
invariance when the ingredients are invariants claimed previously. The infor-
mation lacking can always be recovered from the mechanical proof: for each
constituent invariant iq, the input for the prover contains a lemma with the
name iq-kept-valid, see the proofs at [Hes@].

We can only offer the final input, not the input needed at a specific stage
of the design. Therefore, e.g., if one inspects the proof of jq3-kept-valid,
one sees an invariant (Lq2), which is needed later when the message connect is
slightly modified.

5.1 Marking trees

In this section we extend the algorithm with private variables ci, ll, and fnd,
for component information. The variables ci serve to define a variation of cc of
Section 4.3. We use a new message init to transfer component information to
the nodes of the component.

The command to register and transfer new component information is given
by

proc initp (v, id) =
fnd := true ; ll := v ; ci := id ;
mcast (branch, init, v, id)

end .

If process q executes command initp, it sends init messages to all elements of
branch.q. To allow this we need the property that w.(q, r) < ∞ for all nodes
r ∈ branch.q. This property follows from (Jq0), (Jq2), (Iq0), and the symmetry
of w.

A new component identity is created when process q “learns” the validity
of ib.(ib.q) = q by acceptance of a connect message from ib.q, compare (Jq4).
Following [GHS83], we define the new component identity as the weight of the
core. The new component identity is accompanied by an incremented version
number ll. We thus redefine

25

accept (connect, j) =
enabling ib 6= self

• if j = ib then initp(ll + 1, w.(self , j))
else branch := branch ∪ {j} fi

end .

The message init is now defined by

accept (init, v, id) =
• initp (v, id)
end .

Since the modifications only introduce the new message init and only modify
the new variables fnd, ll, ci, they do not endanger any of the invariants (Jq) of
Chapter 3.

The remainder of this section is devoted to assertions analogous to the an-
tecedents of Theorem 5 of Section 4.3. For the moment we take function g to
be given by ib and we add the assumption ib.(ib.q) 6= q. We first postulate

(Kq0) ib.(ib.q) 6= q ∧ fnd.q ⇒ fnd.(ib.q) ,
(Kq1) ib.(ib.q) 6= q ⇒ ll.q ≤ ll.(ib.q) .

We proceed to show that (Kq0) is invariant. Predicate (Kq0) is threatened
when q receives connect, init, wakeup, or change, and also when p 6= q receives
change. It is preserved by connect because of (Jq4). It is preserved by change
if we postulate

(Kq2) change at q ⇒ ¬fnd.q ,
(Kq3) change at ib.q ⇒ ¬fnd.q .

It is preserved by init and wakeup if we postulate

(Kq4) init at q ⇒ fnd.(ib.q) ,
(Kq5) fnd.q ⇒ ib.(ib.q) 6= ib.q .

Notice that (Kq3), (Jq7), and (Kq4) together imply

(In*Ch) init at q ⇒ change not-at q .

Now, using the invariants (Jq), one can show that the conjunction of (Kq0),
(Kq2), (Kq3), (Kq4), and (Kq5) is indeed invariant.

In order to show that (Kq1) is preserved by wakeup and change, we need
the postulates

(Dld1) ib.q = q ⇒ ll.q ≤ ll.(be.q) ,
(Dld2) change at q ⇒ ll.q ≤ ll.(be.q) ,
(Dld3) change at q ⇒ ll.(ib.q) ≤ ll.q .

In order to show that predicate (Kq1) is preserved by init, we need the postulates

(Kq6) (init, v) at q ⇒ v = ll.(ib.q) ,
(Kq7) init at q ⇒ ll.q < ll.(ib.q) .

26

The treatment of the postulates (Dld1), (Dld2), and (Dld3) is postponed; (Dld1)
and (Dld2) have to wait for the treatment of variable be in a later layer, (Dld3)
must wait for a stronger invariant below.

In order to show that (Kq6) and (Kq7) are preserved, we also postulate

(Kq8) init#q ≤ 1 ,
(Kq9) init at q ⇒ ¬fnd.q ,
(Kq10) (connect, ib.q) at q ⇒ ¬fnd.q .

We also need the following postulates

(In*cr) init at q ⇒ ib.(ib.q) 6= q ,
(In*CC) init at q ⇒ (connect, ib.q) not-at q ,
(Dld4) fnd.q ⇒ ib.(ib.q) = q ∨ q ∈ branch.(ib.q) .

In fact, preservation of (Kq6) up to (Kq10) follows from the predicates postu-
lated up to this point.

The postulates (In*cr) and (In*CC) follow from (Jq2), (Jq4), and the new
postulate

(In*br) init at q ⇒ q ∈ branch.(ib.q) .

The postulates (Dld4) and (In*br) will be treated later. They may be regarded
as strengthenings of (Jq1) under specific circumstances. They do not follow
from (Jq1).

We are now ready to extend predicate (Kq1) with

(Kq11) (connect, q) not-at ib.q ⇒ ll.q ≤ ll.(ib.q) .

It is easy to see that (Dld3) follows from (Jq7), (Jq12), and (Kq11), the latter
with q := ib.q. Before treating its invariance, we notice that (Kq11) implies
that the two companions of a “mutually recognized” core have the same level:

ib.(ib.q) = q ∧ (connect, q) not-at ib.q ∧ (connect, ib.q) not-at q
⇒ ll.(ib.q) = ll.q .

In view of the form of connect, and the invariant (Jq4), we therefore also pos-
tulate that, when one connect message has been accepted and the other one is
still pending, the difference of the levels is one:

(Kq12) (connect, q) not-at ib.q ∧ (connect, ib.q) at q
⇒ ll.(ib.q) = 1 + ll.q .

Consequently, when both connect messages are still pending, the levels have to
be equal:

(Kq13) (connect, q) at ib.q ∧ (connect, ib.q) at q ⇒ ll.(ib.q) = ll.q .

27

Remark. Here we have the first occurrence of what we regard as an asynchronous
handshake: some process q sends a message (kw , q) to r and the reaction of r
depends on whether there is also a similar message (kw , r) of r to q that has
not yet been acknowledged. In this case kw = connect. The GHS algorithm
contains two other asynchronous handshakes, with kw = ask and kw = report.
Since the messages are asynchronous, these handshakes always require some
intricate invariants. 2

It turns out to be possible to prove the invariance of (Kq11), (Kq12), (Kq13)
with the present ingredients. For the proof of (Kq13), we use the observation
that (Jq4), (Jq11), and (In*br) combine to imply

(In*C) init at q ⇒ (connect, q) not-at r .

Because of condition (c) of Theorem 5 in Section 4.3, we also prove the
invariance of

(Kq14) fnd.q ⇒ ll.(ib.q) ≤ ll.q .

5.2 Identifying trees

In this section we reap the fruits of the previous section. It turns out that the
antecedents of Theorem 5 cannot be realized if we take function g given by ib.
Instead of this, we define the state functions jb.q by

jb.q = (if (connect, q) at ib.q then q else ib.q fi) .

The theory of Section 4.3 is now applied with jb for function g. We write JB
for the symmetric binary relation G given by (G1) with jb for g.

We now verify the conditions of Theorem 5 of Section 4.3. It is easy to
see that postulate (Kq11) implies condition (a) and that (Kq11) and (Kq14)
together imply condition (c). Condition (d) is expressed in

(Fn*jb) fnd.q ⇒ fnd.(jb.q) ∨ jb.(jb.q) = q .

This follows from the conjunction of (Kq0) and (Kq10), as is proved in

fnd.q ∧ ¬fnd.(jb.q)
≡ {definition of jb}

fnd.q ∧ ¬fnd.(ib.q) ∧ (connect, q) not-at ib.q
⇒ {(Kq0) and (Kq10)}

ib.(ib.q) = q ∧ (connect, ib.q) not-at q
∧ (connect, q) not-at ib.q

⇒ {definition of jb}
jb.(jb.q) = q .

Condition (G3) of Section 4.3 requires that initially all values cc.q are dif-
ferent. It turns out that these initial values have no algorithmic impact. We
therefore define a state function Ci by

28

Ci.q = (if ll.q = 0 then {q} else ci.q fi) .

Since ci is a number, Ci is a variable of a union type. The theorem prover
NQTHM is untyped and, hence, handles this without problems.

We let Ci play the role of cc in Section 4.3. Now condition (b) of Theorem
5 is equivalent to the invariant

(Lq0) (connect, q) not-at ib.q ∧ ll.(ib.q) = ll.q ⇒ Ci.(ib.q) = Ci.q .

In order to preserve (Lq0) when q accepts init, we postulate an analogue of
(Kq6):

(Lq1) (init,−, id) at q ⇒ id = Ci.(ib.q) .

Predicate (Lq0) is violated when process p = ib.q accepts a connect message
from q while ci.p 6= ci.q and ll.p = ll.q and q 6= ib.p. Following [GHS83], we
therefore disable acceptance of (connect, q) by process p when q 6= ib.p and
ll.p ≤ ll.q. Since ll.q is not known to process p, we let every connect message
carry the level of the sender as a second argument. So the commands to send
connect in wakeup and change are replaced by

send(be, connect, self , ll) ,

and acceptance of connect is redefined

accept (connect, j, v) =
enabling j = ib ∨ v < ll

• if j = ib then initp (ll + 1, w.(j, self))
else branch := branch ∪ {j} fi

end .

Here we eliminate the disabling condition ib = self . For this purpose we intro-
duce the new invariant

(Lq2) ib.q = q ⇒ ll.q = 0 .

Remark. For the mechanical test v < ll we use NQTHM’s function lessp, which
yields false if ll = 0, independently of v. Thus, silently, we also introduce the
invariant that all numbers in the algorithm are ≥ 0. 2

We now come back to the proof of invariance of (Lq0). The disabling of
connect only makes sense if we also postulate

(Lq3) (connect, q, v) at ib.q ⇒ ll.q = v ∨ ib.(ib.q) = q .

The second disjunct of the consequent of (Lq3) may be somewhat disappointing,
but when we delete it we cannot prove invariance. It turns out that (Lq3) as it
stands is strong enough.

In order to preserve (Lq0) when q accepts a message init or connect, we
postulate

29

(Lq4) (init, v) at q ⇒ v > 0 ,
(Lq5) ll.(ib.q) < ll.q ⇒ Ci.q = w.(ib.q, q) .

The proofs of invariance of (Lq1) up to (Lq5) are similar to earlier proofs. In this
way we get condition (b) in the intended application of Theorem 5 of Section
4.3. So, Theorem 5 is applicable. It turns out that we only need its corollary

(Thm5) (q, r) ∈ JB∗ ∧ jb.(jb.q) = q
⇒ ll.r ≤ ll.q ∧ (ll.r = ll.q⇒ Ci.r = Ci.q) .

We now want to prove the invariance of the analogue of (G3), i.e.,

(Lq6) Ci.q = Ci.r ⇒ (q, r) ∈ JB∗ .

We first use (Jq7) and (Jq12) to prove that, for every pair of nodes x, y, the
predicate (x, y) ∈ JB is stable (once true, it remains true). It follows that

(Stab) predicate (x, y) ∈ JB∗ is stable.

Because of (Stab), predicate (Lq6) is threatened only when process q or r accepts
an init message or a connect message. In order to show that acceptance by p
of (connect, ib.p) preserves (Lq6) for p = r (or p = q), we postulate the new
invariant

(Lq7) Ci.q = w.(r, s) ⇒ (q, r) ∈ JB∗ .

Because of (Stab), predicate (Lq7) is threatened only when process q accepts
init or connect. The critical case is acceptance by process q of (connect, ib.q).
Here we need that (q, ib.q) is an edge of graph (V,E) by (Iq0), and that all
edges of the graph have different weights, see axiom (A0) in Section 4.2. We
also need the observation that, if process p accepts a connect message from
q, the postcondition (q, p) ∈ JB∗ is established. This follows from (Jq4) and
(Jq13).

Later on it will turn out to be convenient to know that equality of Ci implies
equality of ll:

(Lq8) Ci.q = Ci.r ⇒ ll.q = ll.r .

In order to show that (Lq8) is preserved by connect, we postulate

(Lq9) Ci.q = w.(r, ib.r) ∧ (connect, ib.r) at r ⇒ ll.q = 1 + ll.r .

In order to show that (Lq9) is preserved we also postulate

(Lq10) Ci.q = w.(r, s) ⇒ r ∈ branch.s ∨ r = ib.s ,
(Lq11) Ci.q 6=∞ .

Remark. Of course, originally, we introduced the invariants with ci instead of
Ci. This gave the problem to establish (Lq6) initially. Since we did not want
to use a union type in the algorithm without algorithmic necessity, we later
replaced ci by Ci.

30

6 The investigation of outgoing edges

When a node p receives a new component identity, it gets the task to participate
in the search for the minimum-weight outgoing edge of the component. This
task is separated into a local task to search the neighbours and a communal task
to wait for reports from the children, to compare these reports with the local
result, and finally to send a report to the parent. We first treat the separation
and the communication structure for the communal task. The local search is
treated next. It is more difficult and contains a nasty optimization.

6.1 Collecting and sending reports

For the separation of the tasks, we extend procedure initp with a selfmessage
search. We use an auxiliary boolean variable srch to express that the node is
in the process of determining a local outgoing edge of the component. When a
node p has determined the optimal outgoing edge of its subtree, it reports this
fact to its parent ib.p by sending a report message.

In order to verify that a node has accepted all expected report messages,
we introduce a variable explist to hold the set of nodes from which reports are
expected. The two core members also send reports to each other. Treatment of
these special reports is postponed: for the moment they are simply disabled.

We extend initp with a selfmessage sendrep to send the report message when
the search is completed and all reports have been received.

Thus, procedure initp is redefined by

proc initp (v, id) =
ll := v ; ci := id ;
delay (sendrep) ;
delay (search) ;
fnd := true ; srch := true ;
explist := branch ;
mcast (branch, init, v, id)

end .

We define acceptance of sendrep by

accept (sendrep) =
enabling ¬srch ∧ (explist = ∅)

• fnd := false ;
send (ib, report, self)

end .

For the moment, selfmessage search is disabled and message report is defined
by

accept (report, j) =
enabling j 6= ib

• explist := explist \ {j}
end .

31

In this way, we only determine the communication flow. The contents of the
communication will be treated later.

The messages introduced endanger the old invariants only by the assignment
fnd := false in sendrep. So they only endanger the old invariants that contain
positive occurrences of fnd. These are (Kq0) and (Kq4). In order to preserve
(Kq0) under sendrep, we postulate

(Mq0) ib.(ib.q) 6= q ∧ fnd.q ⇒ q ∈ explist.(ib.q) ,
(Mq1) init at q ⇒ q ∈ explist.(ib.q) .

In order to preserve (Mq0) and (Mq1) when ib.q accepts report, we need the
new postulates

(Mq2) fnd.q ⇒ (report, q) not-at ib.q ,
(Mq3) init at q ⇒ (report, q) not-at ib.q .

In order to preserve (Mq2) under connect, we postulate

(Mq4) (connect, r) at q ⇒ (report, q) not-at r .

In order to preserve (Mq3) under sendrep, we postulate

(Dld5) (report, r) at q ⇒ ib.q = r ∨ fnd.q ,
(Mq5) sendrep at q ⇒ fnd.q .

Predicate (Mq5) is preserved under sendrep because of the new postulate

(Mq6) sendrep#q ≤ 1 .

We now eliminate predicate (Dld5). It is easy to see that (Dld5) follows
from the new postulates

(Mq7) fnd.q ∨ explist.q = ∅ ,
(Mq8) (report, r) at q ⇒ ib.q = r ∨ r ∈ explist.q .

It is easy to see that (Mq7) is preserved. In order to preserve (Mq8) when q
accepts report, wakeup, or change, we postulate

(Mq9) (report, r)#q ≤ 1 ,
(Mq10) (report, q) not-at q ,
(Dld6) (report, ib.q) at q ⇒ change not-at q .

In order to eliminate (Dld1) and (Dld2), postulated in Section 5.1, we now
postulate the invariant

(Mq11) ll.(be.q) < ll.q ⇒ be.q = ib.q .

In fact, it is easy to see that (Dld1) follows from (Mq11), and that (Dld2) follows
from (Mq11) and (Iq2). Predicate (Mq11) is preserved when q accepts report
because of the new postulate

(Mq12) (report, r) at q ∧ ll.r < ll.q ⇒ ib.q = r .

32

In order to eliminate (In*br) and (Dld4), we postulate

(Mq13) explist.q ⊆ branch.q .

Now postulate (Dld4) follows from (Mq0) and (Mq13). Similarly (In*br) follows
from (Mq1) and (Mq13). The treatment of (Dld6) is postponed to another layer.

We turn to the contents of the reports. The purpose of the search is that
connect messages must only be sent between nodes that belong to different
components of graph JB, and moreover that such a message is sent only over
the outgoing edge with least weight. In order to compare the weights of the
outgoing edges, we introduce a variable bw (best-weight in [GHS83]) that is to
hold the least weight obtained thus far.

We let procedure initp initialize the new values of be and bw . In view of
the invariants (Dld0) and (Jq2), we extend initp with the assignments

be := ib ; bw :=∞ .

We give report messages bw as a second argument. So we replace the sending
command in sendrep by

send (ib, report, self ,bw) .

Accepting reports is redefined by

accept (report, j, v) =
enabling j 6= ib

• explist := explist \ {j} ;
if v < bw then be := j ; bw := v fi

end .

At this point we can prove the invariance of (Iq1) and (Iq3), by means of the
invariants obtained until now. Invariance of (Iq2) remains suspended.

6.2 The local search

The variable be (best edge) points by default to the father; otherwise it points
to the subtree with the lightest outgoing edge, or to an outgoing edge of the
node itself. Part of this is expressed by the invariant

(Nq0) be.q = ib.q ∨ be.q ∈ branch.q ∨ Ci.q 6= Ci.(be.q) .

The main local property of bw is that, if the edge to be is an outgoing edge
of the component, its weight is held by bw and, if q is not searching, bw is a
lower bound of the weights of the outgoing edges of q. These two properties are
expressed in

(Nq1) be.q = ib.q ∨ be.q ∈ branch.q ∨ bw .q = w.(q,be.q) ,
(Nq2) bw .q ≤ w.(q, r) ∨ srch.q ∨ (q, r) ∈ JB∗ .

33

In order to determine a local candidate for be, we introduce a private variable te
(test-edge in [GHS83]) to hold the neighbour that is currently being investigated.
The relation of te with the graph JB is determined by the postulate

(Nq3) w.(q, te.q) ≤ w.(q, r) ∨ te.q = q ∨ (q, r) ∈ JB∗ .

Therefore, if te.q is not connected to q, it is the nearest neighbour of q not
connected to q.

In order to preserve (Nq3) when a new value for te.q is needed, we introduce
a variable bas.q (related to the attribute Basic in [GHS83]) to hold the set of
untried neighbours, according to the invariant

(Nq4) w.(q, r) =∞ ∨ r ∈ bas.q ∨ (q, r) ∈ JB∗ ∨ ib.q = r .

The final disjunct of (Nq4) is needed for the case that a connect message from
q to r is still pending.

Since we also want that the set bas is not bigger than necessary, we extend
the assignments ib := be in wakeup and change by bas := bas \ {be}. For
the same reason, the assignment to branch in connect, is extended with bas :=
bas \ {j}.

We let the search be executed by taking for te the nearest node in bas if the
corresponding weight is less than bw . Otherwise the search can be called off,
which is indicated by putting srch := false.

We use functions lewe and lenb for least weight and least neighbour of a node
q with respect to a set S of neighbours. These functions are defined as follows.
If there is a node r ∈ S with w.(q, r) <∞ and w.(q, r) ≤ w.(q, x) for all x ∈ S
then lewe.(q, S) = w.(q, r) and lenb.(q, S) = r. Otherwise lewe.(q, S) = ∞ and
lenb.(q, S) = q. Now we define

accept (search) =
• if lewe.(self ,bas) < bw then

te := lenb.(self ,bas) ;
send (te, ask, self , ll, ci)

else srch := false fi
end .

The component identity of the neighbour is only relevant if it is recent enough,
i.e., if its level is sufficiently high. Therefore, message ask has the level of the
sender as second argument, and it is disabled as long as the receiver has a lower
level. The answer is the boolean value whether or not the component identities
agree. If they agree, both sender and receiver can use (Lq6) to delete the other
node from its set bas. So message ask is defined by

accept (ask, j, v, id) =
enabling v ≤ ll

• send (j, answer, id = ci) ;
if id = ci then bas := bas \ {j} fi

end .

34

Upon a positive answer the search must be resumed. If node p receives a negative
answer, it compares w.(p, te.p) with its current value of bw and, if possible,
adjusts be and bw . So we define

accept (answer, b) =
• if b then

bas := bas \ {te} ;
delay (search)

else
srch := false ;
if w.(self , te) < bw then

be := te ;
bw := w.(self , te)

fi
fi ;
te := self

end .

The new assignment to be in answer endangers (Iq3). This predicate is pre-
served since w.(p, te) < bw implies te 6= p by the convention w.(p, p) = ∞.
Predicate (Mq11) is also threatened by the assignment to be in answer. It is
preserved if we postulate

(Nq5) answer at q ⇒ ll.q ≤ ll.(te.q) .

Before proving the invariance of the goal directed invariants (Nq0) up to
(Nq5), we first introduce some bottom-up invariants:

(Oq0) search at q ⇒ te.q = q ,
(Oq1) search#q ≤ 1 ,
(Oq2) (ask, q) not-at q ,
(Oq3) answer at q ⇒ te.q 6= q .

For the invariance of (Oq0) and (Oq1), we need the new postulates

(Oq4) search at q ⇒ srch.q ,
(Oq5) srch.q ⇒ fnd.q ,
(Oq6) srch.q ∨ te.q = q .

Preservation of (Oq3) needs the new postulates

(An*f) answer at q ⇒ fnd.q ,
(Oq7) answer#q ≤ 1 ,
(Oq8a) (ask, q) at r ⇒ te.q = r .

The name (Oq8a) is chosen to indicate that this invariant will be abolished in
the next section; it will be weakened to an invariant with the name (Oq8).

We note that (An*f) follows from (Oq3), (Oq5), and (Oq6). Preservation of
(Oq7) and (Oq8a) follows from the new postulates

35

(Oq9) (ask, q) at te.q ⇒ answer not-at q ,
(Oq10) (ask, q)#r ≤ 1 .

Preservation of (Oq9) and (Oq10) needs no new postulates.
We turn to the treatment of the invariants (Nq0) up to (Nq5). Preservation

of (Nq0) when q accepts report or answer follows from (Mq8), (Mq13), and the
new postulate

(Nq6) (answer, false) at q ⇒ Ci.q 6= Ci.(te.q) .

Preservation of (Nq4) needs the new postulates

(Nq7) (answer, true) at q ⇒ (q, te.q) ∈ JB∗ ,
(Nq8) (ask,−, v) at q ⇒ v > 0 .

Preservation of (Nq5) and (Nq6) requires the new postulates

(Nq9) (ask, q, v) at te.q ⇒ ll.q = v ,
(Nq10) (ask, q,−, id) at te.q ⇒ Ci.q = id .

Preservation of (Nq8) needs the new postulate

(Nq11) fnd.q ⇒ ll.q > 0 .

Preservation of (Nq9) and (Nq10) only needs the new postulate

(As*f) (ask, q) at te.q ⇒ fnd.q ,

which follows from (Oq2), (Oq5), and (Oq6).
At this point, the only pending postulates are (Iq2), (Dld6), and (Ch-M).

6.3 An optimization

The algorithm of [GHS83] has a nasty optimization in its response to Test (our
message ask): if two nodes with the same component identity are concurrently
sending Test messages to each other, both notice this and do not answer. This
optimization is important in the worst case analysis of the number of messages
needed. In fact, the authors of [GHS83] come to the upper bound 5n log n + 2e
where n is the number of nodes and e is the number of edges. The summand
2e corresponds to their estimate that every edge can only be rejected (removed
from the set bas) once, and that every rejection only requires two messages. In
the algorithm above, rejection of an edge may require four messages. So for the
above version we would have to replace 2e by 4e. Since the number of edges e
may be quadratic in n, replacing 4e by 2e is a significant gain in efficiency (see
Section 9.5). We therefore reluctantly decided to adopt the optimization.

The optimization consists of replacing ask by

36

accept (ask, j, v, id) =
enabling v ≤ ll

• if ci 6= id then send (j, answer, false)
else

bas := bas \ {j} ;
if j = te then

te := self ;
delay (search)

else send (j, answer, true) fi
fi

end .

The proof of correctness of this optimization is quite involved. Since it violates
postulate (Oq8a) above, we have to replace (Oq8a) by the postulates

(Oq8) (ask, q) at r ⇒ te.q = r ∨ te.r = q ,
(Nq12) (ask, q) at r ⇒ te.q = r ∨ (q, r) ∈ JB∗ ,
(Nq13) (ask, q,−, id) at r ⇒ te.q = r ∨ Ci.r = id ,
(Nq14a) (ask, q) at r ⇒ te.q = r ∨ r /∈ bas.q ,
(Nq15) (ask, q) at r ⇒ te.q = r ∨ (ask, r) not-at q .

Moreover, we also need the postulates

(Nq16) (ask, te.q,−,Ci.q) at q ⇒ answer not-at q ,
(Nq17a) (answer, true) at q ⇒ q /∈ bas.(te.q) .

One can verify that predicate (Nq16) is the only new postulate that does not
hold for the non-optimized version.

Remarks. We have chosen the invariants in the non-optimized version in such
a way that almost all of them could be kept in the optimization. For example,
under assumption of (Oq8a), predicate (Nq9) is equivalent to

(ask, q, v) at r ⇒ ll.q = v ,

but this “version of (Nq9)” is not valid for the optimization.
In a much later stage the invariants (Nq14a) and (Nq17a) will be replaced by

closely related but slightly stronger predicates. The names are chosen in such a
way that comparison is easy.

37

7 The decision at the core

In Section 7.1, we introduce the way by which a chain of change messages is
started and we re-establish most of the invariants that are threatened by this
modification. In Section 7.2 we establish some invariants that have been claimed
already but not yet proved. Section 7.3 is devoted to invariants that justify the
names best-edge and best-weight for the variables be and bw . In Section 7.4,
we establish the remaining pending invariant (Ch-M) introduced in Section 3.3.
Finally, in Section 7.5, we treat the variables term.q, introduce halt messages,
and establish the first proof obligation (Goal).

7.1 The generation of change

Up to this point, a change message is only sent upon reception of a change
message. In this section we decide how the reports at the core generate a
change message. The purpose of change messages is that they trigger the node
with the lightest outgoing edge of the component to send a connect message
over that edge. The final comparison to determine this node is performed at
the core. Thus, when both core members have obtained all reports expected,
they compare bw values. The companion with the lighter bw value then starts
a chain of change messages along its be path.

Until now a report from the core companion was disabled. We weaken this
enabling condition of report as follows. A node is allowed to accept a report
from the companion when it has executed sendrep, i.e., when it satisfies ¬fnd.
In that case it compares its bw value with the value v of the report. If bw < v, it
decides to start a chain of change messages. It does so by means of a selfmessage
change. We thus redefine

accept (report, j, v) =
enabling j 6= ib ∨ ¬fnd

• if j 6= ib then
explist := explist \ {j} ;
if v < bw then be := j ; bw := v fi

elsif bw < v then
delay (change)

fi
end .

This modification clearly endangers all invariants that restrict the occurrence
of change messages. Therefore the proofs of (Jq6), (Jq8), and (Jq9) must be
adapted and, in order to preserve (Jq7) and (Jq10), we need the postulates

(Pq0) (report, ib.q, v) at q ∧ bw .q < v ⇒ ib.(ib.q) = q ,
(Pq1) (report, ib.q, v) at q ∧ bw .q < v ⇒ change not-at ib.q .

It turns out, however, that the modification can violate predicate (Jq12)
when process q has (connect, ib.q) in its buffer and accepts (report, ib.q). This
is a consequence of our assumption that the buffers are bags (and not FIFO).

38

We are dealing here with the problem that a core has been formed, but one
of the core members has not yet accepted the corresponding connect message,
while the companion and its dependent nodes have completed the testing of
their surroundings. Then it is possible that the final report of the companion
overtakes the connect message. This must not be allowed since the delayed core
member is not yet ready for reception of the report.

We therefore introduce a private boolean variable mar (for married, so to
speak) to indicate that the message (connect, ib) has been accepted. So we
redefine

accept (report, j, v) =
enabling j 6= ib ∨ (¬fnd ∧ mar)

• if j 6= ib then
explist := explist \ {j} ;
if v < bw then be := j ; bw := v fi

else
mar := false ;
if bw < v then delay (change) fi

fi
end .

Variable mar is set to true upon reception of (connect, ib). So we redefine

accept (connect, j, v) =
enabling j = ib ∨ v < ll

• if j = ib then
mar := true ;
initp(ll + 1, w.(j, self))

else intobranch (j) fi
end ,

where intobranch is defined by

proc intobranch (j) =
branch := branch ∪ {j} ;
bas := bas \ {j}

end .

We now postulate

(Pq2) mar.q ⇒ (connect, ib.q) not-at q .

It turns out that indeed the postulates (Pq0), (Pq1), and (Pq2) are sufficient
to preserve the invariants of the families (Jq), (Kq), (Lq), (Mq), and (Nq).

We turn to the preservation of (Pq0), (Pq1), (Pq2). In order to preserve
(Pq0) when q accepts report or answer, we need the new postulate

(Dld7) (report, ib.q) at q ∧ fnd.q ⇒ ib.(ib.q) = q .

In order to show that (Pq1) is preserved when p 6= q accepts report, we postulate

39

(Pq3) (report, q, v) at ib.q ⇒ bw .q = v .

Predicate (Pq2) is preserved under wakeup and change because of the new
postulates

(Pq4) mar.q ∧ be.(ib.q) = q ⇒ ib.(ib.q) = q ,
(Pq5) mar.q ⇒ ib.q 6= q ,
(Pq6) change at q ⇒ ¬mar.q .

Predicate (Pq3) is preserved under wakeup and change by postulating

(Dld8) (report, q) at be.q ⇒ be.q = ib.q .

In order to preserve (Pq4) when p 6= q accepts answer or report, we postulate

(Dld9) mar.q ⇒ te.(ib.q) 6= q ,
(Pq7) (report, q) at ib.q ∧ mar.q ⇒ ib.(ib.q) = q .

Predicate (Pq7) is preserved when q accepts sendrep because of (Mq5) and the
new postulate

(Pq8) mar.q ∧ fnd.q ⇒ ib.(ib.q) = q .

Predicate (Pq8) can be violated when q has a pending init message. Indeed,
it can be shown that this cannot be excluded. We therefore decide to disable
reception of init while mar holds. We thus redefine

accept (init, v, id) =
enabling ¬mar

• initp (v, id)
end .

7.2 Some pending predicates

We turn to the remaining pending proof obligations (Dld6), (Dld7), (Dld8), and
(Dld9), and the invariance of (Iq2).

It is clear that (Dld6) follows from (Pq6), (Jq12), and the new postulate

(Qq0) (report, ib.q) at q ⇒ mar.q ∨ (connect, ib.q) at q .

In order to preserve (Qq0) when p 6= q accepts sendrep, we postulate

(Qq1) fnd.(ib.q) ∧ ib.(ib.q) = q ⇒ mar.q ∨ (connect, ib.q) at q .

Predicate (Qq1) is preserved when p 6= q accepts connect by postulating

(Qq2) (connect, q) at ib.q ∧ ib.(ib.q) = q
⇒ mar.q ∨ (connect, ib.q) at q .

It may be left to the reader to prove that predicate (Dld7) follows from
(Jq4), (Pq8), and (Qq0). Predicate (Dld8) is proved as follows:

40

(report, q) at r ∧ ib.q 6= r
⇒ {(Mq8), (Mq13)}

(report, q) at r ∧ ib.q 6= r ∧ (q = ib.r ∨ q ∈ branch.r)
⇒ {(Jq0)}

(report, q) at r ∧ ib.q 6= r ∧ q = ib.r
⇒ {(Qq0)}

(mar.r ∨ (connect, q) at r) ∧ ib.q 6= r ∧ q = ib.r
⇒ {(Jq4)}

mar.r ∧ ib.q 6= r ∧ q = ib.r
⇒ {(Pq4)}

be.q 6= r .

If we now instantiate r = be.q, we get (Dld8).
We turn to the treatment of (Dld9). Since (Dld9) is concerned with the

value of te, we first postulate the invariant

(Qq3) te.q = ib.q ⇒ ib.q = q .

Predicate (Qq3) is preserved under acceptance of connect, init, ask, or answer
because of the new postulate

(Qq4) ib.q /∈ bas.q .

We now observe that (Kq5), (Pq8), and (Qq3) with q := ib.q combine and yield
that

(Dld9a) mar.q ∧ fnd.q ⇒ te.(ib.q) 6= q .

Now (Dld9) follows from (Dld9a) and the additional predicate

(Qq5) mar.q ∧ ¬fnd.q ⇒ te.(ib.q) 6= q .

Predicate (Qq5) is preserved when p 6= q accepts init, connect, ask, or answer
because of the new invariant

(Qq6) mar.q ⇒ q /∈ bas.(ib.q) .

We finally turn to the proof of preservation of (Iq2): if change is at node q
then be.q 6= ib.q. In order to show that (Iq2) is preserved under change and
report, we postulate

(Qq7) be.q ∈ branch.q ⇒ be.(be.q) 6= ib.(be.q) ,
(Qq8) mar.q ∧ ib.(ib.q) = q ∧ bw .q <∞ ⇒ be.q 6= ib.q .

In order to preserve (Qq7) under report, init, and answer, we postulate

(Qq9) (report, q, v) at ib.q ∧ v <∞ ⇒ be.q 6= ib.q .

Predicate (Qq9) is preserved when q accepts sendrep because of (Mq5) and the
new invariant

(Qq10) fnd.q ∧ bw .q <∞ ⇒ be.q 6= ib.q .

41

7.3 Best edges

We now strive for a justification of the names best weight and best edge for the
variables bw and be. This justification consists of the above invariants (Nq0)
and (Nq1) in combination with the new invariants

(Rq0) be.q ∈ branch.q ⇒ bw .(be.q) = bw .q ,
(Rq1) r ∈ branch.q ⇒ bw .q ≤ bw .r ∨ r ∈ explist.q .

In (Rq1) the final disjunct is included for the case that q is yet expecting a
report from node r.

We first give the crucial arguments for preservation of (Rq0). For the case
that p 6= q accepts report or answer we use (Dld5), (An*f), and the new postu-
late

(Rq2) be.q ∈ branch.q ⇒ ¬fnd.(be.q) .

Preservation of (Rq2) can be proved without new arguments.
Predicate (Rq0) is preserved when q itself accepts report because of (Pq3)

and

(Re*ib) (report, q) at r ⇒ ib.q = r ∨ ib.r = q ,

which follows from (Jq0), (Mq8), and (Mq13).
Predicate (Rq1) is preserved when q accepts change because of the new

postulate

(Rq3) change at q ⇒ bw .q ≤ bw .(ib.q) .

In order to preserve (Rq1) when q accepts (connect, j) with j 6= ib.q, we first
postulate

(Rq4) (connect, q) at r ⇒ bw .q = w.(q, r) ∨ ib.r = q .

Yet, including j into branch.q violates (Rq1) if w.(j, q) < bw .q. The only way
to rescue (Rq1) is to modify connect by also adding j to explist.q in case of
w.(j, q) < bw .q. Now explist is the set of neighbours to which an init message
has been sent. We therefore redefine command intobranch in connect (cf. Section
7.1) by

proc intobranch (j) =
branch := branch ∪ {j} ;
bas := bas \ {j} ;
if w.(j, self) < bw then

send (j, init, ll, ci) ;
explist := explist ∪ {j}

fi
end .

42

This version of intobranch with guard w.(j, self) < bw is an optimization with
respect to [GHS83] where the guard fnd is used. This optimization does not
influence the worst case behaviour.

In this way (Rq1) is saved by means of (Rq4), but the modification endangers
all invariants that mention init or explist. In particular, in order to preserve
(Kq4) and (Mq7), we need to ensure that the then part of intobranch is executed
only when fnd holds. For this purpose we need the predicate

(Co*jb) (connect, r) at q ∧ (q, r) ∈ JB∗ ⇒ jb.q = r .

This predicate is proved as follows. Assume that the antecedent of (Co*jb)
holds, i.e., (q, r) ∈ JB∗ and (connect, r) is at q. Predicate (Jq4) implies that
ib.r = q. Therefore (Iq0) implies (q, r) ∈ MST. Since (Iq0) also yields JB ⊆
MST, Theorem 2 implies (q, r) ∈ JB. Since (connect, r) is at q, we have jb.r 6= q.
Therefore the definition of JB implies that jb.q = r. This proves (Co*jb). Notice
that this proof needs the invariants not only at the nodes q and r but at all
nodes of the graph.

At this point the only pending predicate is (Ch-M). In the next section we
will show that this predicate also follows from the invariants at our disposal.

7.4 The first harvest

In this section we prove the pending predicate (Ch-M). Again we need the
invariants not only locally, but in all nodes of the graph.

Predicate (Ch-M) is proved by showing that, if change is at q and be.q /∈
branch.q, then be.q is the lightest outgoing edge of the JB–component of q. We
first prove that it is an outgoing edge and then that it is the lightest one.

Recall that, in Section 5.2, we proved

(Thm5) (q, r) ∈ JB∗ ∧ jb.(jb.q) = q
⇒ ll.r ≤ ll.q ∧ (ll.r = ll.q⇒ Ci.r = Ci.q) .

It follows from (Jq6), (Jq7), (Jq8), and (Jq12) that

(Ch*jb) change at q ⇒ jb.(jb.q) = q 6= jb.q .

Using (Thm5), (Ch*jb), (Iq2), (Mq11), and (Nq0), we then get

(Ch-out) change at q ∧ be.q /∈ branch.q ⇒ (q,be.q) /∈ JB∗ .

This shows that (q,be.q) is an outgoing edge.
We now use Theorem 6 of Section 4.3 to prove that it is the lightest outgoing

edge. We first define the function up.v by

up.v.q = v ≤ bw .q ∧ ¬fnd.q ∧ jb.q 6= q .

Using (Jq1), (Mq7), (Rq1), and condition (Fn*jb) from Section 5.2, we obtain

jb.(jb.q) /∈ {q, jb.q} ∧ up.v.(jb.q) ⇒ up.v.q .

Now Theorem 6, with jb for g and up.v for ϕ, yields

43

(Thm6) jb.(jb.p) = p 6= jb.p ∧ up.v.p ∧ up.v.(jb.p)
⇒ ((p, q) ∈ JB∗ ⇒ up.v.q) .

If we choose v = bw .p, the antecedents of (Thm6) are implied by (Ch*jb),
together with (Kq2), (Kq3), and (Rq3). This results in

(Thm6C) change at p ∧ (p, q) ∈ JB∗ ⇒ ¬fnd.q ∧ bw .p ≤ bw .q .

We now use (Nq1), (Nq2), (Oq5), and (Iq2), to obtain

change at p ∧ be.p /∈ branch.p ∧ w.(q, r) < w.(p, be.p)
⇒ ((p, q) ∈ JB∗ ⇒ (p, r) ∈ JB∗) .

Together with (Ch-out), this expresses that (p,be.p) is a minimum–weight out-
going edge of the JB component of p. Therefore Theorem 3 with function f
given by f.x = ((p, x) ∈ JB∗) implies predicate (Ch-M).

7.5 Termination detected

When the two core nodes observe that the component has no outgoing edges,
they are allowed to terminate the algorithm. To prove this assertion, we intro-
duce the predicate fincr.p to express that p belongs to a final core:

fincr.p ≡ jb.(jb.p) = p 6= jb.p ∧ ¬fnd.p ∧ ¬fnd.(jb.p)
∧ bw .p =∞ ∧ bw .(jb.p) =∞ .

Using (Thm6) with v =∞ we get

(Thm6T) fincr.p ∧ (p, q) ∈ JB∗ ⇒ up.∞.q .

Using (Nq2), (Oq5), and the definition of the edge relation E, we then get

up.∞.q ∧ (q, r) ∈ E ⇒ (q, r) ∈ JB∗ .

Since the graph (V,E) is connected, induction over the graph with Theorem 0
then yields

(fi-JB) fincr.p ⇒ (p, q) ∈ JB∗ .

This expresses that JB is a spanning tree of the graph. Since (Iq0) implies
JB ⊆ MST, Theorem 2 implies that MST = JB.

A second application of (Thm6T) together with (fi-JB) yields

(fi-up) fincr.p ⇒ up.∞.q ,

which assertion will be useful to show that, when fincr.p holds, the algorithm is
in the process of termination.

It is now important that a node p that satisfies fincr.p can observe this.
Indeed, when a node accepts a report from its companion and observes that
both core nodes have bw =∞, it may conclude that fincr holds:

44

(Re-fi) (report, ib.p,∞) at p ∧ bw .p =∞ ∧ ¬fnd.p ∧ mar.p
⇒ fincr.p ,

which assertion follows from (Mq2), (Mq4), (Pq2), (Pq3), (Pq5), and the new
postulate

(Sq0) (report, ib.q,∞) at q ∧ mar.q ⇒ ib.(ib.q) = q .

The invariance of (Sq0) requires the new postulate

(Sq1) be.q = ib.q ∨ bw .q <∞ .

The invariance of this predicate is easy.
In view of (Re-fi), a node p that accepts (report, ib.p,∞) in a state with

bw .p = ∞, can broadcast halt messages. So we replace the final command of
report by

if bw < v then delay(change)
elsif v =∞ then delay(halt) fi .

Here halt is a new message, declared by

accept (halt) =
• terminated := true ;

mcast (branch,halt)
end .

It is easy to see that this modification preserves all invariants. We postulate the
new invariants

(Sq2) halt at q ⇒ (r, s) ∈ JB∗ ,
(Sq3) term.q ⇒ (r, s) ∈ JB∗ .

Preservation of (Sq2) follows from (fi-JB) and (Re-fi). Predicate (Sq3) is pre-
served because of (Sq2). According to (Sq3), validity of term.q implies that JB
spans the graph.

Since we later want to show that, when term.q holds, the algorithm is in the
process of termination, we also postulate

(Sq4) halt at q ⇒ up.∞.r ,
(Sq5) term.q ⇒ up.∞.r .

In fact, we have that up.∞.r is equivalent to

ib.r 6= r ∧ (connect, r) not-at ib.r ∧ bw .r =∞ ∧ ¬fnd.r .

This implies that wakeup is ignored and that there are no messages connect,
change, init, ask, answer, sendrep, search in transit. Therefore preservation of
(Sq4) follows from (fi-up) and (Re-fi). Predicate (Sq5) is preserved because of
(Sq4).

Using (Sq3), (Sq5), (Iq0), (Jq0), and (Jq1), we then get our first goal

(Goal) term.q ⇒ ((r, s) ∈ MST ≡ s ∈ {ib.r} ∪ branch.r) .

45

8 Upon termination

In this Chapter we deal with the second proof obligation, which is to prove that,
when all messages are disabled, all processes q have term.q. So we analyse the
state under the assumption that all messages in transit are disabled.

Below, we shall first determine the conditions under which a node is disabled.
We then proceed to eliminate the possible messages pending at such a node.

Up to now, most invariants remain valid if arbitrary messages are thrown
away. Let us say that an invariant is a progress invariant of message type kw
if it can be invalidated by throwing away a message with name kw . The only
progress invariants mentioned as yet are (Jq1), (Kq11), (Kq12), (Lq0), (Qq0),
(Qq1), and (Qq2). All these predicates are progress invariants only of connect.
In this section we shall encounter progress invariants for the other messages.

The Sections 8.1, 8.2 deal with the simpler cases of deadlock (i.e., of disabled
messages). The most crucial disabled messages are connect and ask messages.
The disabling conditions for these messages hinge on the difference between the
levels of sender and receiver. In Section 8.4, we therefore investigate the set
Low of the nodes of minimal level. In Section 8.6 we introduce messages winit
to ensure that, if a node q is disabled and is element of Low , then its neighbour
ib.q also belongs to Low . Using this we prove that Low contains a core.

Section 8.7 contains the second harvest. Here we prove that, when all mes-
sages in transit are disabled, all nodes q have term.q (the second proof obliga-
tion).

In Section 8.8, we introduce an integer variable fc to eliminate the variables
explist, srch, and fnd. In Section 8.9, we prove that all terminated nodes are
idle (the third proof obligation).

The aim of this Section is to show that, if all messages at all nodes are
disabled, all nodes q have term.q. This is expressed by

DIS ⇒ term.q .

Here disabledness of the system is defined by DIS : (∀ q :: Dis.q) , where
Dis.q expresses that all messages at node q are disabled. It follows from the
declaration of the messages that Dis.q is equivalent to the conjunction of the
following six predicates

Dfr.q : kw at q ⇒ kw /∈ {wakeup, change, search, answer,halt} ,
Dco.q : (connect, j, v) at q ⇒ j 6= ib.q ∧ ll.q ≤ v ,
Dse.q : sendrep at q ⇒ srch.q ∨ explist.q 6= ∅ ,
Das.q : (ask, j, v) at q ⇒ ll.q < v ,
Din.q : init at q ⇒ mar.q ,
Dre.q : (report, j) at q ⇒ j = ib.q ∧ (mar.q⇒fnd.q) .

We now treat these disabling conditions one by one.

46

8.1 Progress invariants for report

In order to show that a disabled process has no pending init message, we claim
that

(In*Re) init at q ∧ mar.q ⇒ (report, ib.q) at q .

This predicate follows from (In*cr) and the new postulate

(Tq0) mar.q ⇒ ib.(ib.q) = q ∨ (report, ib.q) at q .

In order to show that (Tq0) is preserved when ib.q accepts change, we need the
new postulate

(Tq1) mar.q ⇒ (connect, q) at ib.q ∨ fnd.(ib.q) ∨ (report, ib.q) at q .

Predicate (Tq1) is preserved when q accepts connect because of the new invari-
ant

(Tq2) (connect, ib.q) at q
⇒ (connect, q) at ib.q ∨ fnd.(ib.q) ∨ (report, ib.q) at q .

It follows from Dfr, Din, Dre, (In*Re), and (Kq9) that we have

(Dkws) Dis.q ∧ kw at q
⇒ kw /∈ {init,wakeup, change, search, answer,halt} .

So, at a disabled node, the only pending messages can be connect, sendrep, ask,
or report.

8.2 Sending wakeup and halt

At present the algorithm has two obvious cases in which deadlock can occur.
The first case is when a process wakes up and sends a connect message to a
node that has no pending wakeup message. The second case is that a process
sends an ask message to a node without a pending wakeup message. It would
be possible, in the commands of wakeup and search, to add the sending of a
wakeup message to the nodes be and te, respectively. This would require more
wakeup messages, however, than an ordinary broadcast of wakeup messages.
We therefore prefer to postulate that, initially, wakeup messages are in transit
to all processes. Using (Dld0), we then obtain the invariant

(Tq3) wakeup at q ∨ ib.q 6= q .

Using (Tq3), (Lq3), (Jq4), and (Qq0), we conclude from Dco.q and Dre.q that

(DisCo) Dis.q ∧ (connect, r) at q ⇒ ib.q 6= q ∧ ib.q 6= r ∧ ll.q ≤ ll.r ,
(DisRe) Dis.q ∧ (report, r) at q ⇒ ib.q = r ∧ fnd.q .

It follows from (Tq0), (Tq1), (DisCo), and (DisRe) that

(Dis-ma) Dis.q ∧ Dis.(ib.q) ∧ mar.q ⇒ fnd.q ∨ fnd.(ib.q) .

The main progress invariant for halt is

(Tq4) term.(ib.q) ⇒ ib.(ib.q) = q ∨ halt at q ∨ term.q .

47

8.3 Deadlock in search

We postulate two progress invariants for the selfmessages search and sendrep:

(Tq5) srch.q ∧ te.q = q ⇒ search at q ,
(Tq6) fnd.q ⇒ sendrep at q .

The invariance of these predicates is easily verified. Using Dfr.q and Dse.q, we
obtain from these predicates

(DisSe) Dis.q ∧ fnd.q ∧ te.q = q ⇒ explist.q 6= ∅ .

The name explist is intended to suggest that q ∈ explist.r means that r is
expecting a report message from q. This is formalized in the invariant

(Tq7) q ∈ explist.r ⇒ init at q ∨ fnd.q ∨ (report, q) at r .

Using (Tq7), (DisRe), (Dkws), (Mq13), and (Jq2), we obtain

(Dis-ex) Dis.q ∧ Dis.r ∧ q ∈ explist.r ⇒ fnd.q .

The conjunction of (DisSe) and (Dis-ex) will be used to show that in a state
where all nodes of a component are disabled and some of them satisfy fnd then
some of them have te.q 6= q.

We now show that, if te.q 6= q, there is a pending ask or answer message.
Here the optimization described in subsection 6.3 causes a major complication.
We postulate

(Tq8) te.q = q ∨ (ask, q) at te.q ∨ answer at q
∨ (ask, te.q, ll.q, ci.q) at q .

In order to show that (Tq8) is preserved when p 6= q accepts ask we postulate

(Tq9) (ask, q) at te.q ∧ te.(te.q) = q ∧ ci.(te.q) = ci.q
⇒ (ask, te.q) at q .

In order to show that (Tq9) is preserved when q accepts search, we postulate

(Tq10) te.q 6= q ∧ ci.(te.q) = ci.q ∧ q ∈ bas.(te.q) ⇒ (ask, q) at te.q .

Predicate (Tq10) is preserved because of some old invariants together with the
new invariant

(Tq11) ll.(te.q) < ll.q ⇒ (ask, q) at te.q .

It follows from Das.q, (Dkws), and (Tq8), and from Das.(te.q) and (Nq9),
that we have

(Dis-te) Dis.q ∧ te.q 6= q ⇒ (ask, q) at te.q ,
(DisAsk) Dis.(te.q) ∧ (ask, q) at te.q ⇒ ll.(te.q) < ll.q .

48

8.4 The low level region

Inspired by condition (DisAsk), we introduce the set Low of the nodes of mini-
mal level:

q ∈ Low ≡ (∀ x :: ll.q ≤ ll.x) .

The aim is to show that property DIS implies that ¬fnd holds at the nodes in
Low . Notice that set Low depends on the state of the system.

It follows from (Dis-te), (DisAsk), that we have

DIS ∧ te.q 6= q ⇒ ll.(te.q) < ll.q .

This implies

(Low-te) DIS ∧ q ∈ Low ⇒ te.q = q .

On the other hand it follows from (Jq0), (Jq2), and (Kq1), that

(Low-br) q ∈ Low ∧ r ∈ branch.q ⇒ r ∈ Low .

Now we have all ingredients to prove

(Low-fn) DIS ∧ q ∈ Low ⇒ ¬fnd.q .

In fact, in order to exploit the invariants (DisSe) and (Dis-ex), we choose a
function h (in a nondeterministic way, and dependent on the state), that satisfies
h.q ∈ explist.q if explist.q is nonempty, and h.q = q otherwise. By (Mq13),
(Jq0), (Jq2), and (Iq0), we have (q, h.q) ∈ MST for all q with h.q 6= q. By
Theorem 4 in Section 4.2, this implies that

(∀ q :: (∃ n :: hn+2.q = hn.q)) .

We also observe that

h.q 6= q ∧ h.(h.q) = q
⇒ {definition of h}

h.q ∈ explist.q ∧ q ∈ explist.(h.q)
⇒ {(Mq13) and (Jq0)}

ib.(h.q) ∈ branch.(h.q)
⇒ {(Jq2)}

false .

We thus get the stronger result

(∀ q :: (∃ n :: hn+1.q = hn.q)) , and hence by (Mq13), (Jq0), and (Jq3):
(∀ q :: (∃ n :: explist.(hn.q) = ∅)) .

By induction, it follows from (Low-br) and (Mq13), that

q ∈ Low ⇒ hk.q ∈ Low for all k.

Using (Low-te) and (DisSe), we then get

49

DIS ∧ q ∈ Low ⇒ (∃ n :: ¬fnd.(hn.q)) .

Finally, (Dis-ex) implies that the dummy n is zero. This proves (Low-fn).
Below we shall establish the crucial property that in a terminal state the

forest constructed contains a core. For this purpose, we shall prove that

Dis.q ∧ q ∈ Low ⇒ ib.q ∈ Low .

Unfortunately, this is not yet an invariant of the algorithm. Indeed, the present
version of the algorithm is incorrect and may lead to deadlock. The point is
that in the present version the receiver of connect does not always send its level
to a new dependent node.

8.5 An operational intermezzo

Let us first give an example to show that the present version of the algorithm
may lead to deadlock. The situation is as follows. There is a component A of
graph G, which sends a connect message to a component B. Component B is
still searching its surroundings and, in particular, it is waiting for an answer from
component C. Component C has a level ll lower than the levels of components
A and B. It sends a connect message to component A and is absorbed into A
without init messages sent back. Therefore the level of C remains low and the
ask message from B remains pending.

One of the smallest graphs in which this can occur has five nodes, say a, b,
c, d, and e. It has six edges, say in order of increasing weights: {a, d}, {b, e},
{a, b}, {a, c}, {c, d}, and {c, e}. In the picture, we have given the edges the
weights 1 up to 6.

d a b

c e

�
�
��5

1 3

6

4 2

a small graph

The scenario goes as follows. First, a, b, d, e accept wakeup messages and send
and accept connect messages to and from the nearest neighbour. In this way
two components are formed A = {a, d} and B = {b, e}, both with level ll = 1.
These components only consist of cores. So, no init messages are needed. Now
ask messages are being sent: between a and b, and from d and e to c. The
first two ask messages evoke the answer no, while the ask messages to c remain
pending since ll.c = 0.

The nodes a and b send report messages to d and e, respectively. Finally
node c accepts wakeup and sends a connect message to a. Since ll.c < ll.a, node
a accepts the connect message and puts branch := {c}. Node a does not send
an init message to c. Therefore ll.c remains less than one and the ask messages
from d and e are never answered. The system deadlocks in a state where the
forest has two components {a, c, d} and {b, e}.

50

8.6 Absorption into a nonprobing component

The above analysis suggests that the else–part of procedure intobranch must be
extended with a weak version of the init message that only distributes the values
of ll and ci. In [GHS83], this version is differentiated from init by means of an
additional (esssentially) boolean parameter. Since we do not want to modify all
invariants related to init, we introduce a new message winit (for weak init). So
the final command in intobranch becomes

if w.(j, self) < bw then
send (j, init, ll, ci) ;
explist := explist ∪ {j}

else send (j,winit, ll, ci) fi .

Since our buffers are not required to be FIFO buffers, we must reckon with the
possibility that a winit message is overtaken by an init message. In that case
a subsequent reception of winit might be harmful. We therefore decide that
outdated winit messages are ignored. In this way we arrive at the declaration

accept (winit, v, id) =
• if ll < v then

ll := v ; ci := id ; be := ib ;
mcast (branch,winit, v, id)

fi
end .

Here, variable be is reset to ib in order not to endanger predicate (Mq11).
The introduction of winit endangers all invariants that mention ll, ci, or be.

In order to preserve them we need a number of invariants that are more or less
analogous to invariants for init. Since outdated messages are being ignored, we
may include the additional assumption that the message is not outdated (i.e.,
that the guard of the command of winit holds). The first invariant that we
claim is an analogue of (In*br):

(Uq0) (winit, u) at q ∧ ll.q < u ⇒ q ∈ branch.(ib.q) .

Together with (Jq2), (Jq4), (Jq7), (Jq11) this implies

(Wi*) (winit, u) at q ∧ ll.q < u
⇒ ib.(ib.q) 6= q ∧ (connect, ib.q) not-at q
∧ (connect, q) not-at r ∧ change not-at q .

None of the invariants of family (Jq) is threatened. In order to preserve (Kq1),
(Kq6), and (Kq7), we postulate the invariants

(Uq1) (winit, u) at q ⇒ u ≤ ll.(ib.q) ,
(Uq2) (winit, u) at q ∧ ll.q < u ⇒ ¬fnd.q ,
(Uq3) (winit, u) at q ∧ init at q ⇒ u < ll.(ib.q) .

51

Remark. The invariants (Uq1) and (Uq3) are somewhat stronger than necessary.
It is possible to extend the antecedents of (Uq1) and (Uq3) with the conjunct
ll.q < u. We have removed these conjuncts in a late stage of the design for
convenience in the proof of termination. 2

In order to preserve (Lq0), we postulate the following analogue of (Lq1):

(Uq4) (winit, ll.(ib.q), id) at q ∧ ll.q < ll.(ib.q) ⇒ id = ci.(ib.q) .

The predicates (Lq6), (Lq7), (Lq8), (Lq9), (Lq10), (Lq11) are preserved when
we postulate

(Uq5) (winit,−, ci.r) at q ⇒ (q, r) ∈ JB∗ ,
(Uq6) (winit,−, w.(r, s)) at q ⇒ (q, r) ∈ JB∗ ,
(Uq7) (winit, u, ci.r) at q ⇒ u = ll.r ,
(Uq8) (connect, ib.r) at r ∧ (winit, u, w.(r, ib.r)) at q ⇒ u = 1 + ll.r ,
(Uq9) (winit,−, w.(r, s)) at q ⇒ r ∈ branch.s ∨ ib.s = r ,
(Uq10) (winit,−,∞) not-at q .

Predicate (Qq7) requires the new postulate

(Uq11) (winit, u) at q ∧ ll.q < u ∧ be.(ib.q) = q ⇒ ib.(ib.q) = q .

The antecedent of (Uq11) may seem unlikely, but it can occur when some node
accepts winit and then sends winit to q.

Predicate (Qq9) needs (analogously to (Mq3)) the new postulate

(Uq12) (winit, u) at q ∧ ll.q < u ⇒ (report, q) not-at ib.q .

We now have to show that the predicates (Uq) are invariant. In order to
preserve (Uq5) and (Uq7) under winit we need the new invariants

(Uq13) (winit,−, id) at q ∧ (winit,−, id) at r ⇒ (q, r) ∈ JB∗ ,
(Uq14) (winit, v, id) at q ∧ (winit, w, id) at r ⇒ v = w .

In this way it is proved that the introduction of message winit preserves all the
invariants introduced up to now. It remains to show that winit serves some
goal.

The sole purpose of the introduction of message winit is captured in the
progress invariant

(Uq15) ll.q < ll.(ib.q) ∧ ib.(ib.q) 6= q
⇒ (connect, q) at ib.q ∨ init at q ∨ (winit, ll.(ib.q)) at q .

The proof of invariance of (Uq15) is delicate but needs no new invariants.
Now, finally, we get the invariant announced as the motivation for this sec-

tion. Indeed, the invariants (Uq15), (Dkws), (DisCo), and (Kq11) (the latter
one applied to ib.q) together imply that ll.(ib.q) ≤ ll.q follows from Dis.q and
Dis.(ib.q). We therefore have, as announced at the end of Section 8.4, the
invariant

52

(Low-ib) DIS ∧ q ∈ Low ⇒ ib.q ∈ Low .

We now apply Theorem 4 of Section 4.2 to obtain

DIS ∧ q ∈ Low ⇒ (∃ n :: ibn.q ∈ Low ∧ ibn+2.q = ibn.q) .

At this point, we need that Low is nonempty. For this purpose it suffices to
postulate that V is nonempty. Now using (Low-ib) and the definition of Low ,
we obtain the existence of a core in Low :

(Low-cr) DIS ⇒ (∃ p ∈ Low :: ib.p 6= p ∧ ib.p ∈ Low ∧ ib.(ib.p) = p) .

8.7 Analysis of the ultimate core

In the previous Section, we proved that in the terminal graph the region Low
contains a core. It remains to show that the tree connected to this core is
the minimum–weight spanning tree of the graph. For this purpose we need to
analyse the co-ordination of the two core members.

One critical moment in the execution of the algorithm is when two core
members have determined the bw values and send reports to each other in
order to decide which of the two is to execute change. It is crucial that either
the two bw values differ or that the system is allowed to terminate. In the latter
case the bw values both must be equal to∞. This property indeed follows from
the invariants we have collected, but the proof is delicate. So we propose to
prove

Theorem. The invariants obtained imply

(Re*cr) (report, ib.p) at p ∧ ib.(ib.p) = p ∧ mar.p ∧ bw .p <∞
⇒ bw .p 6= bw .(ib.p) .

Proof. Let p be a node that satisfies the antecedent and yet has bw .p =
bw .(ib.p). We derive a contradiction.

The idea is to use axiom (A0) of Section 4.2, which says that all finite weights
differ, in combination with the invariants

(Nq1) be.q = ib.q ∨ be.q ∈ branch.q ∨ bw .q = w.(q,be.q) ,
(Rq0) be.q ∈ branch.q ⇒ bw .q = bw .(be.q) .

This combination may suggest to replace q repeatedly by be.q, as long as be.q ∈
branch.q. For this purpose, we introduce the function ben given by

ben.q = (if be.q ∈ branch.q then be.q else q fi) .

It follows from (Jq0), (Jq2), and (Iq0), that we have

ben.q 6= q ⇒ ben.(ben.q) 6= q ∧ (q,ben.q) ∈ MST .

53

Therefore, Theorem 4 implies that repeated application of ben leads to a fix-
point. So there are natural numbers a and b and nodes p1 = bena.p and
p2 = benb.(ib.p) with ben.p1 = p1 and ben.p2 = p2. Moreover, (Rq0) implies
that bw .p1 = bw .p = bw .(ib.p) = bw .p2.

We now want to apply the third alternative of (Nq1). In order to eliminate
the first alternative, we introduce a function recent given by recent.q≡ (be.q 6=
ib.q). Then (Nq1) reduces to

recent.q ∧ ben.q = q ⇒ bw .q = w.(q,be.q) .

Using (Qq8), (Qq9), and (Pq3), we get recent.p and recent.(ib.p). On the other
hand, (Qq7) yields

recent.q ⇒ recent.(ben.q) .

We thus get recent.p1 and recent.p2, and hence w.(p1,be.p1) = w.(p2,be.p2).
Now axiom (A0) implies p2 = p1 or p2 = be.p1. We use component identities
to eliminate the second possibility. In fact, invariant (Nq0) implies Ci.p1 6=
Ci.(be.p1). In order to prove that p and ib.p have equal Ci values, we observe
that (Lq0) and (Kq11) together imply

(connect, q) not-at ib.q ∧ (connect, ib.q) not-at q ∧ ib.(ib.q) = q
⇒ Ci.q = Ci.(ib.q) .

Together with (Mq4) and (Pq2), this implies that Ci.p = Ci.(ib.p). Function
ben preserves Ci because of

be.q ∈ branch.q ⇒ Ci.q = Ci.(be.q),

which property is proved in

be.q = r ∧ r ∈ branch.q
⇒ {(Jq0), (Jq2), (Jq11), (Mq11)}

ib.r = q ∧ (connect, r) not-at q ∧ r 6= ib.q ∧ ll.q ≤ ll.r
⇒ {(Kq1)}

ib.r = q ∧ (connect, r) not-at q ∧ ll.q = ll.r
⇒ {(Lq0)}

Ci.q = Ci.r .

We thus obtain Ci.p1 = Ci.p2. Therefore axiom (A0) implies that p1 = p2.
In order to derive that p = ib.p, we introduce a kind of inverse of ben. Let

function ibn be defined by

ibn.q = (if ib.(ib.q) 6= q then ib.q else q fi) .

Using (Jq0) and (Jq2), we get

ben.q 6= q ⇒ ibn.(ben.q) = q .

We now assume that the natural numbers a and b are minimal. If a ≤ b, then
ib.p = ibnb.(benb.(ib.p)) = ibnb.(bena.p) = ibnb−a.p = p. If a > b, a similar
calculation also yields ib.p = p. So, we have ib.p = p. This however contradicts
(Pq5). 2

54

This theorem is crucial for the proof of invariance of

(Vq0) ib.(ib.q) = q ∧ ib.q 6= q ∧ ¬mar.q ∧ bw .q ≤ bw .(ib.q)
⇒ (connect, ib.q) at q ∨ change at q ∨ change at ib.q
∨ halt at q ∨ term.q .

Notice that this is the only progress invariant for change messages. In order to
show that (Vq0) is preserved when q accepts answer or (report, j) with j 6= ib.q,
we use (An*f), (Dld5) and the new invariant

(Vq1) ib.(ib.q) = q ∧ fnd.q ⇒ mar.q .

We now fulfil our second main proof obligation:

Theorem. Assume that graph (V,E) is connected. Then, for every node q, we
have the invariant

DIS ⇒ term.q.

Proof. Using (Tq3), (Vq0), (DisCo), and (Dkws), we obtain

DIS ∧ ib.(ib.q) = q ∧ bw .q ≤ bw .(ib.q)
⇒ mar.q ∨ term.q .

To eliminate mar.q, we observe that (Dis-ma), (Low-ib), and (Low-fn) imply

DIS ∧ q ∈ Low ⇒ ¬mar.q .

This implies

DIS ∧ q ∈ Low ∧ ib.(ib.q) = q ∧ bw .q ≤ bw .(ib.q) ⇒ term.q .

Now, using (Sq5) and symmetry, we get

DIS ∧ q ∈ Low ∧ ib.q ∈ Low ∧ ib.(ib.q) = q
⇒ term.q ∧ term.(ib.q) .

Therefore, both members of the final core of (Low-cr) satisfy term.
We now use the invariant (Tq4) which implies that

DIS ∧ term.(ib.q) ⇒ ib.(ib.q) = q ∨ term.q .

Using Theorem 6 of Section 4.3 we then get term.q for all nodes q connected
to the core. Since all nodes are connected because of (Sq3), it follows that all
nodes q have term.q. 2

55

8.8 The last program transformation

We now reduce the variables srch, fnd, explist to ghost variables by introducing
an integer variable fc (for find-count , see [GHS83]), related to the other variables
by the invariant

(Wq0) fc.q = #fnd.q + #srch.q + #explist.q .

Recall that, for P boolean, #P denotes 0 or 1 when P is false or true, respec-
tively.

In order to preserve postulate (Wq0), we extend the assignment to explist in
initp with fc := 2+#explist and we extend the assignments te := self in search
and answer, the assignment to fnd in sendrep, and the assignment to explist in
report with fc := fc − 1. In order to eliminate explist and fnd, we observe that
from (Wq0), (Mq5), (Mq7), and (Oq5) we get

fnd.q ≡ fc.q 6= 0 ,
sendrep at q ⇒ (¬srch.q ∧ explist.q = ∅ ≡ fc = 1) .

We therefore can eliminate the variables explist and fnd from the guards of
report and sendrep. See Chapter 10 for the concrete modifications in the algo-
rithm.

8.9 Terminated nodes are idle

In this section we deal with the third proof obligation of Section 2.2, that every
terminated process is idle. As byproducts we also prove that, as soon as some
process has terminated, all messages are enabled and all levels are equal.

Our proof obligation is captured in the invariant

(tm-idl) term.q ⇒ idle.q ,

where idle.q is defined to mean that every message at q is enabled and such that
acceptance is equivalent to skip, i.e., that the only resulting state change is the
removal of the message.

As a step in the proof, we define the predicate open.q to mean that every
message at node q is enabled and we claim

(tm-opn) term.p ⇒ open.q .

Using (Sq5) and some other invariants we first show

(tm-ms) term.p ∧ kw at q ⇒ kw ∈ {report,wakeup,halt,winit} .

Of these four remaining messages, report is the only one that can be disabled.
So, for (tm-opn), it suffices to observe that (Sq5) and (Qq0) imply

term.p ∧ (report, ib.q) at q ⇒ ¬fnd.q ∧ mar.q .

For predicate (tm-idl), we treat the four messages one by one. Message report
is never equivalent to skip since it always modifies the private variables fc or
mar. So we need to prove

56

(tm-Re) term.q ⇒ report not-at q .

In order to do so, we first prove the invariance of the new postulates

(Wq1) mar.q ⇒ ib.(ib.q) = q ∨ bw .(ib.q) <∞ ∨ init at q ,
(Wq2) mar.q ⇒ ib.(ib.q) = q ∨ q ∈ branch.(ib.q) .

Predicate (Wq2) is needed for (Wq1) when ib.q accepts init or connect. Predi-
cate (tm-Re) follows from (Wq1), (Sq5), (Pq3), (Qq0), and some other invari-
ants.

Message halt does not violate (tm-idl) because of the invariant

(Wq3) term.q ⇒ halt not-at q .

Preservation of (Wq3) needs the new postulates

(Wq4) halt at q ∨ term.q ⇒ ib.(ib.q) = q ∨ term.(ib.q) ,
(Wq5) halt#q ≤ 1 ,
(Wq6) halt at q ∨ term.q ⇒ (report, ib.q,∞) not-at q .

Message wakeup is equivalent to skip at node q if ib.q 6= q. Therefore wakeup
does not violate (tm-idl) because (Sq5) implies

term.p ⇒ ib.q 6= q .

Message (winit, u) is equivalent to skip at node q if u ≤ ll.q. For winit, it
therefore suffices to prove

(tm-Wi) term.p ∧ (winit, u) at q ⇒ u ≤ ll.q .

We prove this predicate by constructing a state function LLBW such that

(tm-hi) term.p ⇒ ll.q = LLBW ,
(Wq7) (winit, u) at q ⇒ u < LLBW .

Function LLBW is defined by

llbw .q = ll.q + #(bw .q <∞) ,
LLBW = (MAX x ∈ V :: llbw .x) .

It follows from (Kq6) and (Kq7) that llbw .q never decreases. Consequently,
LLBW never decreases. Therefore, predicate (Wq7) is threatened only when
some process p generates a winit message while accepting a message of the form
(connect, j). In that case it has bw .p ≤ w.(j, p) < ∞ and, hence, it sends
(winit, u) with

u = ll.p < llbw .p ≤ LLBW .

This proves that (Wq7) is an invariant.
As for (tm-hi), we first use (Kq11), (Uq15), (Wq7), (Kq4), and (Sq5) to

prove that

term.p ∧ ll.q = LLBW ∧ (q, r) ∈ JB ⇒ ll.r = LLBW .

57

On the other hand, predicate (Sq5) implies

term.p ⇒ (∃ x ∈ V :: ll.x = LLBW) .

Finally, predicate (tm-hi) follows from (Sq3) and Theorem 0. This concludes
the proof of (tm-Wi), and hence of (tm-idl).

Remarks. If (tm-hi) holds, predicate (Wq7) is stronger than necessary to prove
(tm-Wi). We need the strength of (Wq7), however, to prove (tm-hi). The in-
variants (tm-opn) and (tm-hi) express that, as soon as some process terminates,
all messages are enabled and all levels are equal.

58

9 Towards termination

In this Chapter we prove termination of the algorithm. We do this by con-
structing a state function vf with values in the natural numbers which decreases
whenever some process accepts a message. We do this carefully, so as also to ob-
tain the estimate on the message complexity given in [GHS83]. This illustrates
Hehner’s thesis “Termination is timing”, cf. [Heh89].

9.1 An upper bound for the levels

The first point is to prove that the levels ll of the nodes have an upper bound
that is logarithmic in the size of the graph. Here we use one of the few invariants
claimed in [GHS83], see p. 72, namely

(Xq0) 2ll.q ≤ (# r :: (q, r) ∈ JB∗) .

Indeed, using (Co*jb), (Kq12), (Kq13), and some other invariants, one can
prove that (Xq0) is invariant. Now let n = #V be the number of nodes of the
graph and let L = log2 n be the number of binary digits of n. It then follows
from (Xq0) that we have the invariant ll.q ≤ L − 1. We can therefore define
coll.q = L− 1− ll.q with the invariant

coll.q ≥ 0 .

Using (Kq6) and (Kq7) for init, one can easily verify that coll.q never increases,
and that it decreases whenever process q accepts init or (connect, ib.q).

Remark. Reference [GHS83] claims (Xq0), but has no clear definition of relation
JB∗. 2

9.2 Bounding ask and answer

We would like to use the number of elements of bas as a variant function to
bound the number of accepted ask and answer messages. Unfortunately, the
algorithm sometimes deletes elements from the set bas for other reasons. We
therefore introduce a ghost variable bash, closely related to bas, which is initially
equal to bas and inherits the modifications of bas in ask and answer, but which
is not modified in wakeup, change, and connect. See Chapter 10 for the concrete
modifications.

It is clear that bash.q is never enlarged. The critical property of bash that
we need, is that bash.q becomes smaller whenever process q receives the answer
true or receives an ask message that need not be answered. More precisely, the
first property is

(An*B0) (answer, true) at q ⇒ te.q ∈ bash.q .

This property follows from (Oq3) and the new postulate

(Xq1) te.q = q ∨ te.q ∈ bash.q .

59

In order to show that (Xq1) is preserved when q executes search we postulate

(Xq2) bas.q ⊆ bash.q .

Since deletion from bash is always accompanied by the same deletion from bas,
predicate (Xq2) is invariant. Since te is set to self whenever te is deleted from
bash, predicate (Xq1) is also invariant. The second property of bash that we
need is

(Xq3) (ask, r) at q ⇒ r ∈ bash.q .

Predicate (Xq3) is preserved under answer and search because of the new pos-
tulates

(Xq4) (ask, te.q) at q ⇒ (answer, true) not-at q ,
(Xq5) q ∈ bash.r ⇒ r ∈ bash.q ∨ te.r = q .

In order to show that (Xq5) is preserved when q accepts ask or answer, we have
to postulate the following strengthenings of (Nq14a) and (Nq17a).

(Nq14) (ask, q) at r ⇒ te.q = r ∨ r /∈ bash.q ,
(Nq17) (answer, true) at q ⇒ q /∈ bash.(te.q) .

It is preserved when p 6= q accepts answer because of

(An*B1) (answer, false) at q ⇒ q ∈ bash.(te.q) .

This predicate follows from (Nq6), (Nq16), (Oq7), and the new postulate

(Xq6) te.q = q ∨ q ∈ bash.(te.q) ∨ (answer, true) at q
∨ (ask, te.q,−,Ci.q) at q .

It is clear that (Nq14a) and (Nq17a) follow from (Nq14), (Nq17), and (Xq2).
Preservation of (Nq14) and (Nq17) is proved in the same way as for (Nq14a) and
(Nq17a). Actually, we removed the invariance proofs of (Nq14a) and (Nq17a)
after the introduction of the stronger invariants (Nq14) and (Nq17).

To summarize, we have that #bash.q never increases and that it decreases
whenever process q accepts the answer true or an ask message with third argu-
ment equal to Ci.q.

We cover the remaining cases for the messages answer and ask by introducing
the functions

vfanswer.q = #srch.q + coll.q,
vfask.q = #(srch.q ∧ (answer, false) not-at q) + coll.q .

These functions never increase. Function vfanswer decreases when q accepts the
answer false. Function vfask decreases when p 6= q accepts (ask, q,−, id) with
id 6= ci.p. Combining these three functions, we obtain

vfaa.q = #bash.q + vfanswer.q + vfask.q .

This function never increases. It decreases when q accepts a message answer
or (ask,−,−, ci.q). It also decreases when p 6= q accepts (ask, q,−, id) with
id 6= ci.p.

60

9.3 Other local parts of the variant function

In order to give bounds for the number of accepted messages search, sendrep,
wakeup, change, halt, we define

vfsearch.q = #(srch.q ∧ te.q = q) + #bash.q + coll.q ,
vfsendrep.q = #fnd.q + coll.q ,
vfwakeup.q = wakeup#q ,
vfchange.q = #(ib.q 6= be.q ∨ fnd.q) + coll.q ,
vfhalt.q = #(¬term.q) .

Each of these functions never increases, and actually decreases when q accepts a
message search, sendrep, wakeup, change, halt, respectively. Note that we still
allow more than one wakeup message in transit to one node, and that vfchange.q
also decreases when q accepts wakeup and ib.q = q. For the proof that vfhalt
decreases when q accepts halt, we use (Wq3).

We use the sum #explist.q + #mar.q to deal with the number of report
messages. In fact, by (Mq8), this sum decreases whenever process q accepts
report. It may increase, however, when q accepts init or connect. The assign-
ment explist := branch suggests to look for an upper bound of #branch. By
(Iq0), (Jq0), and (Jq2), we have #branch.q < tdeg .q, where tdeg .q is the degree
of node q in the minimum spanning tree MST. We therefore define

vfreport.q = #explist.q + #mar.q + (tdeg .q − 1)× coll.q .

This function can only increase when process q accepts connect, in which case
it increases with at most 1. It decreases whenever q accepts report.

The message connect now needs a variant function that may subtract two.
We therefore define

vfconnect.q = tdeg .q − 1− branch.q + #((connect, q) at ib.q) .

This function is nonnegative. It only increases, with 1, when q accepts wakeup
and ib.q = q. It decreases when q accepts (connect, r) with r 6= ib.q, and also
when ib.q accepts (connect, q). Note that the sum of vfconnect and vfchange
never increases.

The messages winit are the hardest to deal with, because acceptance of winit
need not modify the private state. On the other hand, we cannot just include
the number of winit messages in the variant function since these messages are
generated during the algorithm in a rather uncontroled way. After consideration
of some alternatives, we came to the following solution. We count the number
of values u ≤ ll.q for which (winit, u) is not at q. So we introduce the function

cwin.q = (# u :: 0 < u ≤ ll.q ∧ (winit, u) not-at q) .

It turns out that cwin.q only changes when process q accepts some message init,
winit, or connect. In order to treat these modifications, we have to verify the
following two new invariants

61

(Xq7) (winit, u)#q ≤ 1 ,
(Xq8) (winit, u) at q ⇒ u > 0 .

We use these invariants to show that cwin.q increases when q accepts a winit
message. Using (Kq6), (Kq7), and (Uq3), we show that cwin.q increases when
q accepts an init message. It follows from (Wi*) that cwin.q increases when q
accepts a message (connect, ib.q).

It is easy to see that cwin.q ≤ ll.q and hence that cwin.q ≤ L − 1. We
therefore define

vfwin.q = L− 1− cwin.q .

This function is nonnegative, it never increases, and decreases whenever q ac-
cepts winit, init, or (connect, ib.q).

9.4 Construction of the variant function

We combine the various functions constructed above into one local variant func-
tion

vfloc.q = vfaa.q + vfsearch.q + vfsendrep.q
+ vfwakeup.q + vfchange.q + vfhalt.q
+ vfreport.q + vfconnect.q + vfwin.q .

Function vfloc.q never increases. It decreases whenever q accepts a message
different from connect and (ask,−,−, id) with id 6= ci.q. It also decreases when
some process p accepts (connect, q) or (ask, q,−, id) with id 6= ci.p. So, if p
accepts a message, there is precisely one process q such that vfloc.q decreases
and all other functions vfloc.r do not increase.

We therefore combine the local variant functions into

vf = (
∑

q ∈ V :: vfloc.q) .

This function decreases whenever some process p accepts a message. By con-
struction vf takes values in the natural numbers. This proves that the number
of messages that can be accepted during execution of the algorithm is bounded
by the initial value of vf .

9.5 The message complexity of the algorithm

We now calculate the initial value of vf to determine the message complexity.
For simplicity we assume that initially there is precisely one wakeup message to
every node. Initially, coll.q = L − 1, and bash.q is the set Nhb.q of neighbour
nodes of q. Careful calculation yields that initially

vfloc.q = 2×#Nhb.q + tdeg .q × L + 5× L− 3 .

Now let n = #V be the number of nodes and e = #E the number of edges.
Summing over all nodes, we have

∑
#Nhb.q = 2×e and

∑
tdeg .q = 2×(n−1).

It follows that, initially,

62

vf = 4× e− 3× n + (7× n− 2)× L .

At first sight, this may be disappointing, since [GHS83] has the upper bound
2 × e + 5 × n × L. The selfmessages search and sendrep, however, should not
be included in the message complexity, as they can be handled locally or even
be eliminated. They contribute #Nhb.q + 2 × (L − 1) to vfloc, and hence
2 × e − 2 × n + 2 × n × L to vf . It follows that the total number of external
messages is bounded by 2× e− n+ (5× n− 2)×L. This confirms the estimate
of [GHS83].

For example, for the algorithm without winit messages, the scenario de-
scribed in section 8.5 deadlocks after 20 steps. If the algorithm is extended with
winit messages, the scenario properly terminates in 63 steps, whereas vf has
the initial value 108.

One should notice the difference between message complexity and time com-
plexity. Message complexity is the maximum number of messages sent during
any execution. Time complexity is the worst case execution time assuming that
all processes act concurrently, that each message takes at most one time unit
to reach its destination, and that computation time is negligible. We refer to
[SiB95] for a minimum spanning tree algorithm with a better time complexity
than ours and [GHS83].

63

10 The algorithm

In this chapter we present the resulting algorithm. The ghost variables fnd,
srch, explist, bash, and the actions upon them are treated between parentheses.
Each process has the private variables

ib,be, te : node ;
term,mar { , fnd, srch } : boolean ;
branch,bas { , explist,bash } : set of node ;
ll,bw , fc, ci : number .

We use functions lewe and lenb for least weight and least neighbour of a node q
with respect to a set of nodes S. If there is a node r ∈ S with w.(q, r) <∞ and
w.(q, r) ≤ w.(q, x) for all x ∈ S then lewe.(q, S) = w.(q, r) and lenb.(q, S) = r.
Otherwise lewe.(q, S) =∞ and lenb.(q, S) = q.

Initial conditions:

ib.q = q ∧ te.q = q ∧ branch.q = ∅ ∧ ll.q = 0
∧ ¬term.q ∧ ¬mar.q ∧ fc.q = 0
∧ bas.q = {r |w.(q, r) <∞} ∧ buf .q = {(wakeup)}
{ ∧ ¬fnd.q ∧ ¬srch.q ∧ explist.q = ∅ ∧ bash.q = bas.q }
∧ bw .q = lewe.(q, V) ∧ bw .q <∞ ∧ be.q = lenb.(q, V) .

We first give procedure initp, which occurs in the messages connect and init.

proc initp (v, id) =
ll := v ; ci := id ;
be := ib ; bw :=∞ ;
fc := #branch + 2 ;
{ explist := branch ; fnd := true ; srch := true }
delay (sendrep) ;
delay (search) ;
mcast (branch, init, v, id)

end .

The eleven messages are declared by

accept (wakeup) =
• if ib = self then

ib := be ;
bas := bas \ {be} ;
send(be, connect, self , ll)

fi
end .

accept (change) =
• if be ∈ branch then

send(be, change)
else send(be, connect, self , ll) fi ;
branch := (branch ∪ {ib}) \ {be} ;
bas := bas \ {be} ;
ib := be

end .

64

accept (connect, j, v) =
enabling j = ib ∨ v < ll

• if j = ib then
mar := true ;
initp(ll + 1, w.(self , j))

else
branch := branch ∪ {j} ;
bas := bas \ {j} ;
if w.(j, self) < bw then

send (j, init, ll, ci) ;
{ explist := explist ∪ {j} }
fc := fc + 1

else send (j,winit, ll, ci) fi
fi

end .

accept (init, v, id) =
enabling ¬mar

• initp (v, id)
end .

accept (sendrep) =
enabling fc = 1

• fc := 0 ; { fnd := false }
send (ib, report, self ,bw)

end .

accept (report, j, v) =
enabling j 6= ib ∨ (mar ∧ fc = 0)

• if j 6= ib then
fc := fc − 1 ;
{ explist := explist \ {j} }
if v < bw then

be := j ; bw := v
fi

else
mar := false ;
if bw < v then delay (change)
elsif v =∞ then delay (halt) fi

fi
end .

accept (halt) =
• term := true ;

mcast(branch,halt)
end .

accept (search) =
• if lewe.(self ,bas) < bw then

te := lenb.(self ,bas) ;
send (te, ask, self , ll, ci)

else
{ srch := false }
fc := fc − 1

fi
end .

accept (ask, j, v, id) =
enabling v ≤ ll

• if ci 6= id then
send (j, answer, false)

else
bas := bas \ {j} ;
{ bash := bash \ {j} }
if j = te then

te := self ;
delay (search)

else send (j, answer, true) fi
fi

end .

accept (answer, b) =
• if b then

bas := bas \ {te} ;
{ bash := bash \ {te} }
delay (search)

else
fc := fc − 1 ;
{ srch := false }
if w.(self , te) < bw then

be := te ; bw := w.(self , te)
fi

fi ;
te := self ;

end .

accept (winit, v, id) =
• if ll < v then

ll := v ; ci := id ; be := ib ;
mcast (branch,winit, v, id)

fi
end .

65

The invariants of the above algorithm are listed in the Appendix.
In the diagram below we give the calling relations between these eleven

messages. An arrow from message kw0 to message kw1 indicates that the
acceptance of kw0 can result in the sending of a message kw1. The destination
of the message is indicated at the arrow. The destination branch means that
the message is sent to all elements of branch and reply means that the message
is sent back to the sender of kw0; the names be and te stand for best-edge and
test-edge, respectively.

winit

haltchangeconnectwakeup

reportsendrepinitsearchask

answer

6 @
@
@
@
@R

6

??

6

- �

� - -
-

�

�
�

�
�
�	

@
@
@
@
@R @

@
@
@
@I

� 6
branch

� �
?

branch� �
?

be

� �
?

branch

be be

ib

self

self selfself

self

self

self

self

te

reply

replyreply branch

11 Comparisons

If we compare the above algorithm with the version of [GHS83], we get some
differences that have yet to be mentioned or emphasized.

0. In [GHS83], the variable in-branch, which is our ib, is reset by Initiate
(our message init), and not by Change-root (our message change) as in our
version. Note however that on page 72 of [GHS83] a message Change-core is
said to have the effect that “the inbound edge . . . is changed to correspond to
best-edge”. Secondly, the handshake that forms a new core requires two Initiate
messages not needed in our version. These two deviations from [GHS83] make
it hard to adapt our proof to the version of [GHS83].

1. In [GHS83], the private variables get their initial values when execut-
ing wakeup. If one wants to formulate invariants of the algorithm, it is more
convenient that the initial values are really initial, cf. [WLL88].

2. We have unified the messages Accept and Reject of [GHS83] into one
message answer. We have split the message Initiate into two messages init and
winit, since they need different motivations and use different invariants. The

66

latter fact is mainly due to our decision to eliminate the order of the messages.
Our message init can be disabled. This is also because of message reordering.

3. Our selfmessage search is an optimized version of procedure test of
[GHS83]: a node p only sends an ask message to neighbour q when the weight
of the edge is less than bw .p. This applies when node p has obtained a small
value of bw by a report from one of its children. We have a similar optimization
in the else part of connect, where an init message is only sent if the relevant
edge has a weight less than bw .p. A third optimization in our version is that the
then part of message connect does not send an init message to the companion
as in [GHS83, WLL88], but itself executes procedure initp. This optimization
is related to our decision that variable ib must be modified by change rather
than init. All these modifications however do not influence the estimates for the
worst case complexity.

4. At three points the algorithm of [GHS83] needs fifo channels, although
Tel ([Tel94], pp. 67, 244) suggests otherwise. The first point is that, when a new
core is formed, the Initiate message must not be passed by the Report message
that may dissolve the core. Secondly, such a dissolving Report message must
not be passed by a new Initiate message.

Since we do not require fifo channels, we have to avert these dangers by other
means. This is done by means of disabling with the boolean variable mar. In
fact, the invariants

(Qq0) (report, ib.q) at q ∧ ¬mar.q ⇒ (connect, ib.q) at q and
(In*Re) init at q ∧ mar.q ⇒ (report, ib.q) at q

imply that the disabled message at the lefthand side is being sent after the
enabling message at the right.

The third point where the version of [GHS83] requires fifo channels, is that
different Initiate messages must not pass each other. We have solved this point
by the condition ll < v in message winit. All three points were found in our
proof effort.

5. Our set variables branch and bas replace the status of edge variable SE
of [GHS83]. The status of node variable SN of [GHS83] is replaced by our
ghost variable fnd. The variable find-count is replaced by our variable fc, which
however counts more than the number of elements of explist, as in [GHS83].

Let us conclude with a comparison of our approach to the one of [WLL88].
At the level of the final proof, our layered design is merely an informal concept,
whereas the proof of [WLL88] is based on a formal theory of lattices of automata.
On the other hand, our model of concurrency is more abstract than the one of
[WLL88]: we only need one bag for all messages in transit to a given node, where
[WLL88] uses three FIFO buffers for each edge of the graph. The final algorithm
of [WLL88] is much closer to [GHS83] than ours is. In fact, our version is the
result of a formally independent design that was strongly inspired by [GHS83],
but we did not aim at an exact copy in the irrelevant details.

67

12 Hearing the witness NQTHM

The theorem prover NQTHM serves as our witness for the correctness of the
algorithm. So we have to deal with two questions: is the witness reliable and
what does it say. For the first question, we can only state that the soundness of
NQTHM has never been disputed.

In this Chapter we deal with the second point, the testimony of the witness.
As always, the answers of the witness depend on the questions posed. In our case
a number of definitions is presented to the prover and (after many sessions of
cross examinations) the prover testifies and proves a short list of final theorems.
The sessions with cross examinations are represented in an abstract way by
the preceding chapters of this paper. Here we focus on the definitions that are
needed to understand and evaluate the final testimony.

For the input to the theorem prover we refer to our WWW pages, [Hes@].
This input consists of a number of files with the extension events. They can
be consulted for every detail the reader wants to go into. In this Chapter we
mainly describe the first file ghsAB and the last one ghsZ.

12.1 The witness learns an asynchronous algorithm

The starting point is the mathematical model of asynchrony as presented in
Section 1.2. So, we have to argue about a global state that consists of private
states of the processes together with the bag of messages in transit.

We organize the private states as association lists, i.e., lists of key–value
pairs that are inspected by the standard function assoc. The buffer of a node
is at key ’buffer. The global state is then an association list with a private
state for each node.

We construct a function step that yields a new global state, given a current
global state x, dependent on a declaration d, when process p tries to accept the
first message m in its buffer.

(defn step (p d x)

(let ((m (message p x)))

(if (enabledm m p d x)

(exe p

(findcmd m d)

(parameters m p d)

(popbuffer p x))

x)))

The new state equals x if the message is disabled. Otherwise the command of
m is executed with the parameters of the message, and the message is removed
from the buffer.

Function step lets process p try and execute the first message in its buffer.
The model, however, is more nondeterministic. It only requires that, whenever
the bag of enabled messages is nonempty, one will be accepted eventually. Since

68

disabled messages do not modify the global state, we have to construct a function
in which an arbitrary enabled message is accepted.

We therefore construct a function genstep in which an arbitrary enabled
process from the list of processes plist accepts an arbitrary enabled message,
if one exists.

(defn genstep (oracle plist d x)

(if (enabledany plist d x)

(let ((p (favproc (car oracle) plist d x)))

(step p d

(swapbufena (cdr oracle) p d x)))

x))

Here favproc is a function that chooses an enabled process from plist and
swapbufena permutes the messages in the buffer of p in such a way that its head
is an enabled message, if possible. The nondeterminacy of function genstep is
guided by the argument oracle. It can be verified, that oracle is always a free
variable, never subject to additional constraints.

Finally, to model a number of nondeterminate steps we introduce the func-
tion

(defn execution (n ora plist d x)

(if (zerop n) x

(execution (sub1 n) (cdr ora) plist d

(genstep (car ora) plist d x))))

Here variable ora serves as a list of independent oracles.
So much for the model of asynchrony. The same introductory definitions can

be used for any asynchronous algorithm. We used them for instance to treat
Segall’s PIF algorithm, cf. [Hes97a].

In order to avoid the dichotomy between edges and nodes, we have chosen
to treat edges as pairs of nodes. So a graph is represented as an association
list that assigns weights to pairs of nodes. We use the value f, i.e., (false),
to represent the value ∞. Here we exploit the untyped nature of NQTHM. We
introduce a weight function w such that (w g x y) is the weight w.(x, y) of the
edge between nodes x and y in graph encoded by g.

We now define execution of one step of the algorithm by

(defn stepghs (g p x)

(step p (dcl-ghs g) x))

where (dcl-ghs g) is the declaration of the messages according to Chapter 10,
with respect to graph g. Execution of n subsequent nondeterminate steps of the
algorithm is defined by

(defn ghs (n ora g x)

(execution n ora (nodes g) (dcl-ghs g) x))

We also formulate the conditions on the graph

69

(defn goodgraph (g)

(and (connectedgraph g)

(lessp 1 (card-of (nodes g)))

(listp (car g))

(is-set (weightlist g))))

So, the graph must be connected and have at least two nodes. The third con-
dition is needed for the syntactic manipulations used in the elimination of the
ghost variables. The fourth condition forces that all weights differ.

This concludes the discussion of the definitions needed to evaluate the tes-
timony of the theorem prover for the algorithm with the ghost variables. This
list is contained in the first 600 lines of the events file ghsAB. The remainder of
ghsAB is concerned with the removal of ghost variables, but we first turn to the
proof obligations for the algorithm with ghost variables.

12.2 The final testimony

We now skip many lines of input to the prover and come to the last events file
ghsZ. Here we get the final testimony. That is, if NQTHM proves all lemmas
in the input files, the lemmas in ghsZ contain the proof obligations presented
in Section 2.2.

It is convenient to separate the initial state of the algorithm from the final
conditions by means of an invariant globalinv. This invariant is constructed
as the conjunction of the universal quantifications of the invariants introduced
in the previous Chapters of this paper, but for the present purposes the form of
the invariant is irrelevant. Only its constructive existence matters, and the fact
that it is an invariant: it holds initially and it is preserved. These assertions are
captured in

(lemma globalinv-is-initialized (rewrite)

(implies (goodgraph g)

(globalinv g (initstate g ora))))

(lemma ghs-preserves-globalinv (rewrite)

(implies (globalinv g x)

(globalinv g (ghs n ora g x))))

Now the four proof obligations of Section 2.2 are proved one by one. Firstly,
predicate (Goal) is an invariant, since it follows from globalinv:

(lemma goal-1 (rewrite)

(implies (and (member p (nodes g))

(member q (nodes g))

(member r (nodes g))

(terminated p x)

(globalinv g x))

(iff (mintree g q r)

(member r (branch+ q x)))))

70

Secondly, when all messages are disabled, term.q holds for all nodes q:

(lemma all-nodes-know-termination (rewrite)

(implies (and (member q (nodes g))

(not (enabledany-ghs g x))

(globalinv g x))

(terminated q x)))

Thirdly, if term.q holds, all messages in transit to process q are enabled and
equivalent to skip: process q accepts them and does nothing.

(lemma terminated-skip (rewrite)

(implies (and (member q (nodes g))

(terminated q x)

(globalinv g x)

(listp (buffer q x)))

(equal (stepghs g q x)

(popbuffer q x))))

The condition (listp (buffer q x)) expresses that buf .q is nonempty. The
term (popbuffer q x) stands for the global state obtained when process q
removes the first message from buf .q.

Finally, after a bounded number of atomic steps all messages are disabled.
This fact is expressed in a more positive way: if after n steps some process is
(still) enabled, than n is less than some bound that only depends on the graph
and the initial state. Here we use the variant function vf , constructed in Section
9.

(functionally-instantiate ghs-terminates (rewrite)

(implies (and (enabledany-ghs g (ghs n ora g x))

(globalinv g x))

(lessp n (vf g (nodes g) x)))

gstep*-terminates

(...))

Here we instantiate an axiomatic theory that proves that, if every step of an
algorithm decrements a function vf, the algorithm terminates in at most (vf x)

steps. See [Hes97b] for the use of axiomatic theories in NQTHM.
This concludes the proof obligations for the algorithm with ghost variables.

12.3 The final removal of ghost variables

At this point the verified algorithm has the ghost variables fnd, srch, explist,
bash. These variables are never inspected and do not occur in the specification.
So they can be eliminated, cf. [OwG76], (3.7).

The algorithm without the ghost variables is defined in the second part of
the events file ghsAB, by means of a general function unghost-dcl that removes
ghost variables, and a constant varset-ghs that indicates which variables must
be retained.

71

(defn dcl-ghs0 (g)

(unghost-dcl (varset-ghs) (dcl-ghs g)))

Here the reader can choose to go through the definitions of unghost-dcl and
varset-ghs, or to ask NQTHM’s execution environment for the meaning of
(dcl-ghs0 ’g).

Since it uses the ghost variables, the global invariant is no longer available.
We therefore define function ghs0 to yield the global state after n steps from
the initial state.

(defn ghs0 (n ora g)

(execution n (cdr ora) (nodes g)

(dcl-ghs0 g)

(initstate0 g (car ora))))

Here initstate0 is the projection of the initial state initstate to the set of
variables retained.

The main theorems are rather similar to the ones proved in the previous
Section. In three of the four main theorems below, we use x to stand for this
global state, via NQTHM’s let construct.

(lemma goal (rewrite)

(let ((x (ghs0 n ora g)))

(implies (and (member p (nodes g))

(member q (nodes g))

(member r (nodes g))

(goodgraph g)

(terminated p x))

(iff (mintree g q r)

(member r (branch+ q x))))))

(lemma all-nodes-know-termination-again (rewrite)

(let ((x (ghs0 n ora g)))

(implies (and (member q (nodes g))

(not (enabledany-ghs0 g x))

(goodgraph g))

(terminated q x))))

(lemma terminated-skip-again (rewrite)

(let ((x (ghs0 n ora g)))

(implies (and (member q (nodes g))

(terminated q x)

(goodgraph g)

(listp (buffer q x)))

(equal (step q (dcl-ghs0 g) x)

(popbuffer q x)))))

72

(lemma ghs0-terminates (rewrite)

(implies (and (enabledany-ghs0 g (ghs0 n ora g))

(goodgraph g))

(lessp n (vfstart g (nodes g)))))

In the last lemma, function vfstart gives a bound independent of the global
state. We can do this since ghs0 starts at the initial state.

12.4 Overview of the events files

The size of the input files to the prover for any project greatly depends on the
style and the proficiency of the user. Yet such numbers give an indication of
the amount of work to be done. In the table below we list the nine events files,
each with number of lines, number of events, and an indication of the contents.
An event is a definition, a lemma, or a disable or enable event.

file # lines # events contents
ghsAB 827 111 main definitions
ghsC 350 58 auxiliary definitions
ghsD 894 114 semantic lemmas
ghsE 2178 328 graph theory
ghsF 574 75 elimination of ghost variables
ghsJR 11805 1588 invariants for safety
ghsSY 15335 1747 invariants and variant functions
ghsZ 183 12 proof obligations
total 32146 4033

The event files can be obtained from [Hes@]. The theorem prover NQTHM can
be obtained (also for free) by ftp from Computational Logic Inc. Information is
available at nqthm-request@cli.com.

As explained above, the reader who wants to judge whether the algorithm
is proved, need only read the files ghsAB and ghsZ, and then submit all event
files in order to NQTHM by means of NQTHM’s command prove-file. This
should result in a file ghsZ.proved where NQTHM certifies that it proved the
files, and that no nondefinitional axioms were assumed.

73

13 Conclusions

Redesign of the algorithm provided motivation for almost all design decisions of
[GHS83]. We were able to add some minor optimizations, without making the
proof more complex. The grain of atomicity has been made somewhat finer by
the introduction of the selfmessages search, sendrep, and at one point change
and halt.

Early in the design we decided that fifo channels should not be needed for
the algorithm and would complicate the proof unnecessarily. This guess turned
out to be justified. Although the original version of [GHS83] needs fifo channels,
the fifo assumption has been removed rather easily, see Section 11.

The proof techniques used are completely classical: ghost variables, invari-
ants, and variant functions for termination. They were combined with the use
of a powerful first-order theorem prover for book-keeping. The proof required
much work, more or less quadratic in the number of invariants. For, with every
extension, we had to go through all previous invariants. In many cases, the
theorem prover decided that no new arguments were needed, but usually there
was a fraction that needed additional arguments.

14 Appendix: list of invariants

The algorithm exposed in Chapter 10 has the invariants listed below. In these
invariants we use the private variables and the ghost variables mentioned in
Chapter 10, and also the following derived variables:

Ci.q = if ll.q > 0 then ci.q else q fi .
jb.q = if (connect, q) not-at ib.q then ib.q else q fi .

JB∗ is the reflexive transitive closure of relation JB given by
(q, r) ∈ JB ≡ q 6= r ∧ (jb.q = r ∨ jb.r = q) .

The list of 166 constituent invariants

(Iq0) ib.q = q ∨ (q, ib.q) ∈ MST .
(Iq1) ib.q = q ⇒ (q,be.q) ∈ MST .
(Iq2) change at q ⇒ be.q 6= ib.q .
(Iq3) w.(q,be.q) <∞ .

(Jq0) q ∈ branch.r ⇒ ib.q = r .
(Jq1) q ∈ branch.(ib.q) ∨ (connect, q) at ib.q ∨ ib.(ib.q) = q .
(Jq2) ib.q /∈ branch.q .
(Jq3) ib.q = q ⇒ branch.q = ∅ .
(Jq4) (connect, q) at r ⇒ ib.q = r .
(Jq5) (connect, q) not-at q .
(Jq6) change at q ⇒ ib.q 6= q .
(Jq7) change at q ⇒ ib.(ib.q) = q .
(Jq8) change at q ⇒ (connect, q) not-at r .
(Jq9) change#q ≤ 1 .

74

(Jq10) change at q ⇒ change not-at ib.q .
(Jq11) (connect, r) at q ⇒ r /∈ branch.q .
(Jq12) change at q ⇒ (connect, ib.q) not-at q .
(Jq13) (connect, r)#q ≤ 1 .

(Kq0) ib.(ib.q) 6= q ∧ fnd.q ⇒ fnd.(ib.q) .
(Kq1) ib.(ib.q) 6= q ⇒ ll.q ≤ ll.(ib.q) .
(Kq2) change at q ⇒ ¬fnd.q .
(Kq3) change at ib.q ⇒ ¬fnd.q .
(Kq4) init at q ⇒ fnd.(ib.q) .
(Kq5) fnd.q ⇒ ib.(ib.q) 6= ib.q .
(Kq6) (init, v) at q ⇒ v = ll.(ib.q) .
(Kq7) init at q ⇒ ll.q < ll.(ib.q) .
(Kq8) init#q ≤ 1 .
(Kq9) init at q ⇒ ¬fnd.q .
(Kq10) (connect, ib.q) at q ⇒ ¬fnd.q .
(Kq11) (connect, q) not-at ib.q ⇒ ll.q ≤ ll.(ib.q) .
(Kq12) (connect, q) not-at ib.q ∧ (connect, ib.q) at q

⇒ ll.(ib.q) = 1 + ll.q .
(Kq13) (connect, q) at ib.q ∧ (connect, ib.q) at q ⇒ ll.(ib.q) = ll.q .
(Kq14) fnd.q ⇒ ll.(ib.q) ≤ ll.q .

(Lq0) (connect, q) not-at ib.q ∧ ll.(ib.q) = ll.q ⇒ Ci.(ib.q) = Ci.q .
(Lq1) (init,−, id) at q ⇒ id = Ci.(ib.q) .
(Lq2) ib.q = q ⇒ ll.q = 0 .
(Lq3) (connect, q, v) at ib.q ⇒ ll.q = v ∨ ib.(ib.q) = q .
(Lq4) (init, v) at q ⇒ v > 0 .
(Lq5) ll.(ib.q) < ll.q ⇒ Ci.q = w.(ib.q, q) .
(Lq6) Ci.q = Ci.r ⇒ (q, r) ∈ JB∗ .
(Lq7) Ci.q = w.(r, s) ⇒ (q, r) ∈ JB∗ .
(Lq8) Ci.q = Ci.r ⇒ ll.q = ll.r .
(Lq9) Ci.q = w.(r, ib.r) ∧ (connect, ib.r) at r ⇒ ll.q = 1 + ll.r .
(Lq10) Ci.q = w.(r, s) ⇒ r ∈ branch.s ∨ r = ib.s .
(Lq11) Ci.q 6=∞ .

(Mq0) ib.(ib.q) 6= q ∧ fnd.q ⇒ q ∈ explist.(ib.q) .
(Mq1) init at q ⇒ q ∈ explist.(ib.q) .
(Mq2) fnd.q ⇒ (report, q) not-at ib.q .
(Mq3) init at q ⇒ (report, q) not-at ib.q .
(Mq4) (connect, r) at q ⇒ (report, q) not-at r .
(Mq5) sendrep at q ⇒ fnd.q .
(Mq6) sendrep#q ≤ 1 .
(Mq7) fnd.q ∨ explist.q = ∅ .
(Mq8) (report, r) at q ⇒ ib.q = r ∨ r ∈ explist.q .
(Mq9) (report, r)#q ≤ 1 .
(Mq10) (report, q) not-at q .
(Mq11) ll.(be.q) < ll.q ⇒ be.q = ib.q .

75

(Mq12) (report, r) at q ∧ ll.r < ll.q ⇒ ib.q = r .
(Mq13) explist.q ⊆ branch.q .

(Nq0) be.q = ib.q ∨ be.q ∈ branch.q ∨ Ci.q 6= Ci.(be.q) .
(Nq1) be.q = ib.q ∨ be.q ∈ branch.q ∨ bw .q = w.(q,be.q) .
(Nq2) bw .q ≤ w.(q, r) ∨ srch.q ∨ (q, r) ∈ JB∗ .
(Nq3) w.(q, te.q) ≤ w.(q, r) ∨ te.q = q ∨ (q, r) ∈ JB∗ .
(Nq4) w.(q, r) =∞ ∨ r ∈ bas.q ∨ (q, r) ∈ JB∗ ∨ ib.q = r .
(Nq5) answer at q ⇒ ll.q ≤ ll.(te.q) .
(Nq6) (answer, false) at q ⇒ Ci.q 6= Ci.(te.q) .
(Nq7) (answer, true) at q ⇒ (q, te.q) ∈ JB∗ .
(Nq8) (ask,−, v) at q ⇒ v > 0 .
(Nq9) (ask, q, v) at te.q ⇒ ll.q = v .
(Nq10) (ask, q,−, id) at te.q ⇒ Ci.q = id .
(Nq11) fnd.q ⇒ ll.q > 0 .
(Nq12) (ask, q) at r ⇒ te.q = r ∨ (q, r) ∈ JB∗ .
(Nq13) (ask, q,−, id) at r ⇒ te.q = r ∨ Ci.r = id .
(Nq14) (ask, q) at r ⇒ te.q = r ∨ r /∈ bash.q .
(Nq15) (ask, q) at r ⇒ te.q = r ∨ (ask, r) not-at q .
(Nq16) (ask, te.q,−,Ci.q) at q ⇒ answer not-at q .
(Nq17) (answer, true) at q ⇒ q /∈ bash.(te.q) .

(Oq0) search at q ⇒ te.q = q .
(Oq1) search#q ≤ 1 .
(Oq2) (ask, q) not-at q .
(Oq3) answer at q ⇒ te.q 6= q .
(Oq4) search at q ⇒ srch.q .
(Oq5) srch.q ⇒ fnd.q .
(Oq6) srch.q ∨ te.q = q .
(Oq7) answer#q ≤ 1 .
(Oq8) (ask, q) at r ⇒ te.q = r ∨ te.r = q .
(Oq9) (ask, q) at te.q ⇒ answer not-at q .
(Oq10) (ask, q)#r ≤ 1 .

(Pq0) (report, ib.q, v) at q ∧ bw .q < v ⇒ ib.(ib.q) = q .
(Pq1) (report, ib.q, v) at q ∧ bw .q < v ⇒ change not-at ib.q .
(Pq2) mar.q ⇒ (connect, ib.q) not-at q .
(Pq3) (report, q, v) at ib.q ⇒ bw .q = v .
(Pq4) mar.q ∧ be.(ib.q) = q ⇒ ib.(ib.q) = q .
(Pq5) mar.q ⇒ ib.q 6= q .
(Pq6) change at q ⇒ ¬mar.q .
(Pq7) (report, q) at ib.q ∧ mar.q ⇒ ib.(ib.q) = q .
(Pq8) mar.q ∧ fnd.q ⇒ ib.(ib.q) = q .

(Qq0) (report, ib.q) at q ⇒ mar.q ∨ (connect, ib.q) at q .
(Qq1) fnd.(ib.q) ∧ ib.(ib.q) = q ⇒ mar.q ∨ (connect, ib.q) at q .
(Qq2) (connect, q) at ib.q ∧ ib.(ib.q) = q

76

⇒ mar.q ∨ (connect, ib.q) at q .
(Qq3) te.q = ib.q ⇒ ib.q = q .
(Qq4) ib.q /∈ bas.q .
(Qq5) mar.q ∧ ¬fnd.q ⇒ te.(ib.q) 6= q .
(Qq6) mar.q ⇒ q /∈ bas.(ib.q) .
(Qq7) be.q ∈ branch.q ⇒ be.(be.q) 6= ib.(be.q) .
(Qq8) mar.q ∧ ib.(ib.q) = q ∧ bw .q <∞ ⇒ be.q 6= ib.q .
(Qq9) (report, q, v) at ib.q ∧ v <∞ ⇒ be.q 6= ib.q .
(Qq10) fnd.q ∧ bw .q <∞ ⇒ be.q 6= ib.q .

(Rq0) be.q ∈ branch.q ⇒ bw .(be.q) = bw .q .
(Rq1) r ∈ branch.q ⇒ bw .q ≤ bw .r ∨ r ∈ explist.q .
(Rq2) be.q ∈ branch.q ⇒ ¬fnd.(be.q) .
(Rq3) change at q ⇒ bw .q ≤ bw .(ib.q) .
(Rq4) (connect, q) at r ⇒ bw .q = w.(q, r) ∨ ib.r = q .

(Sq0) (report, ib.q,∞) at q ∧ mar.q ⇒ ib.(ib.q) = q .
(Sq1) be.q = ib.q ∨ bw .q <∞ .
(Sq2) halt at q ⇒ (r, s) ∈ JB∗ .
(Sq3) term.q ⇒ (r, s) ∈ JB∗ .
(Sq4) halt at q ⇒ up.∞.r , where

up.v.q = ¬fnd.q ∧ jb.q 6= q ∧ v ≤ bw .q .
(Sq5) term.q ⇒ up.∞.r .

(Tq0) mar.q ⇒ ib.(ib.q) = q ∨ (report, ib.q) at q .
(Tq1) mar.q ⇒ (connect, q) at ib.q ∨ fnd.(ib.q) ∨ (report, ib.q) at q .
(Tq2) (connect, ib.q) at q

⇒ (connect, q) at ib.q ∨ fnd.(ib.q) ∨ (report, ib.q) at q .
(Tq3) wakeup at q ∨ ib.q 6= q .
(Tq4) term.(ib.q) ⇒ ib.(ib.q) = q ∨ halt at q ∨ term.q .
(Tq5) srch.q ∧ te.q = q ⇒ search at q .
(Tq6) fnd.q ⇒ sendrep at q .
(Tq7) q ∈ explist.r ⇒ init at q ∨ fnd.q ∨ (report, q) at r .
(Tq8) te.q = q ∨ (ask, q) at te.q ∨ answer at q

∨ (ask, te.q, ll.q,Ci.q) at q .
(Tq9) (ask, q) at te.q ∧ te.(te.q) = q ∧ Ci.(te.q) = Ci.q

⇒ (ask, te.q) at q .
(Tq10) te.q 6= q ∧ ci.(te.q) = ci.q ∧ q ∈ bas.(te.q) ⇒ (ask, q) at te.q .
(Tq11) ll.(te.q) < ll.q ⇒ (ask, q) at te.q .

(Uq0) (winit, u) at q ∧ ll.q < u ⇒ q ∈ branch.(ib.q) .
(Uq1) (winit, u) at q ⇒ u ≤ ll.(ib.q) .
(Uq2) (winit, u) at q ∧ ll.q < u ⇒ ¬fnd.q .
(Uq3) (winit, u) at q ∧ init at q ⇒ u < ll.(ib.q) .
(Uq4) (winit, ll.(ib.q), id) at q ∧ ll.q < ll.(ib.q) ⇒ id = Ci.(ib.q) .
(Uq5) (winit,−,Ci.r) at q ⇒ (q, r) ∈ JB∗ .
(Uq6) (winit,−, w.(r, s)) at q ⇒ (q, r) ∈ JB∗ .

77

(Uq7) (winit, u,Ci.r) at q ⇒ u = ll.r .
(Uq8) (connect, ib.r) at r ∧ (winit, u, w.(r, ib.r)) at q ⇒ u = 1 + ll.r .
(Uq9) (winit,−, w.(r, s)) at q ⇒ r ∈ branch.s ∨ ib.s = r .
(Uq10) (winit,−,∞) not-at q .
(Uq11) (winit, u) at q ∧ ll.q < u ∧ be.(ib.q) = q ⇒ ib.(ib.q) = q .
(Uq12) (winit, u) at q ∧ ll.q < u ⇒ (report, q) not-at ib.q .
(Uq13) (winit,−, id) at q ∧ (winit,−, id) at r ⇒ (q, r) ∈ JB∗ .
(Uq14) (winit, v, id) at q ∧ (winit, w, id) at r ⇒ v = w .
(Uq15) ll.q < ll.(ib.q) ∧ ib.(ib.q) 6= q

⇒ (connect, q) at ib.q ∨ init at q ∨ (winit, ll.(ib.q)) at q .

(Vq0) ib.(ib.q) = q ∧ ib.q 6= q ∧ ¬mar.q ∧ bw .q ≤ bw .(ib.q)
⇒ (connect, ib.q) at q ∨ change at q ∨ change at ib.q
∨ halt at q ∨ term.q .

(Vq1) ib.(ib.q) = q ∧ fnd.q ⇒ mar.q .

(Wq0) fc.q = #fnd.q + #(te.q 6= q) + #explist.q .
(Wq1) mar.q ⇒ ib.(ib.q) = q ∨ bw .(ib.q) <∞ ∨ init at q .
(Wq2) mar.q ⇒ ib.(ib.q) = q ∨ q ∈ branch.(ib.q) .
(Wq3) term.q ⇒ halt not-at q .
(Wq4) halt at q ∨ term.q ⇒ ib.(ib.q) = q ∨ term.(ib.q) .
(Wq5) halt#q ≤ 1 .
(Wq6) halt at q ∨ term.q ⇒ (report, ib.q,∞) not-at q .
(Wq7) (winit, u) at q ⇒ u < LLBW .

(Xq0) 2ll.q ≤ (# r :: (q, r) ∈ JB∗) .
(Xq1) te.q = q ∨ te.q ∈ bash.q .
(Xq2) bas.q ⊆ bash.q .
(Xq3) (ask, r) at q ⇒ r ∈ bash.q .
(Xq4) (ask, te.q) at q ⇒ (answer, true) not-at q .
(Xq5) q ∈ bash.r ⇒ r ∈ bash.q ∨ te.r = q .
(Xq6) te.q = q ∨ q ∈ bash.(te.q) ∨ (answer, true) at q

∨ (ask, te.q,−,Ci.q) at q .
(Xq7) (winit, u)#q ≤ 1 .
(Xq8) (winit, u) at q ⇒ u > 0 .

The derived invariants named in the text

(An*B0) (answer, true) at q ⇒ te.q ∈ bash.q .
(An*B1) (answer, false) at q ⇒ q ∈ bash.(te.q) .
(An*f) answer at q ⇒ fnd.q .
(As*f) (ask, q) at te.q ⇒ fnd.q .
(Ch*jb) change at q ⇒ jb.(jb.q) = q ∧ jb.q 6= q .

change at p ∧ be.p /∈ branch.p ∧ w.(q, r) < w.(p,be.p)
⇒ ((p, q) ∈ JB∗ ⇒ (p, r) ∈ JB∗) .

(Ch-M) change at q ∧ be.q /∈ branch.q ⇒ (q,be.q) ∈ MST .
(Ch-out) change at q ∧ be.q /∈ branch.q

78

⇒ (q,be.q) /∈ JB∗ .
(Co*jb) (connect, r) at q ∧ (q, r) ∈ JB∗ ⇒ jb.q = r .
(Dld0) be.q 6= q .
(Dld1) ib.q = q ⇒ ll.q ≤ ll.(be.q) .
(Dld2) change at q ⇒ ll.q ≤ ll.(be.q) .
(Dld3) change at q ⇒ ll.(ib.q) ≤ ll.q .
(Dld4) fnd.q ⇒ ib.(ib.q) = q ∨ q ∈ branch.(ib.q) .
(Dld5) (report, r) at q ⇒ ib.q = r ∨ fnd.q .
(Dld6) (report, ib.q) at q ⇒ change not-at q .
(Dld7) (report, ib.q) at q ∧ fnd.q ⇒ ib.(ib.q) = q .
(Dld8) (report, q) at be.q ⇒ be.q = ib.q .
(Dld9) mar.q ⇒ te.(ib.q) 6= q .
(Dld9a) mar.q ∧ fnd.q ⇒ te.(ib.q) 6= q .
(DisAsk) Dis.(te.q) ∧ (ask, q) at te.q ⇒ ll.(te.q) < ll.q .
(DisCo) Dis.q ∧ (connect, r) at q

⇒ ib.q 6= q ∧ ib.q 6= r ∧ ll.q ≤ ll.r .
(Dis-ex) Dis.q ∧ Dis.r ∧ q ∈ explist.r ⇒ fnd.q .
(Dis-ma) Dis.q ∧ Dis.(ib.q) ∧ mar.q ⇒ fnd.q ∨ fnd.(ib.q) .
(DisRe) Dis.q ∧ (report, r) at q ⇒ ib.q = r ∧ fnd.q .
(DisSe) Dis.q ∧ fnd.q ∧ te.q = q ⇒ explist.q 6= ∅ .
(Dis-te) Dis.q ∧ te.q 6= q ⇒ (ask, q) at te.q .
(Dkws) Dis.q ∧ kw at q ⇒ kw /∈ {init,wakeup, change, answer} .
(Fn*jb) fnd.q ⇒ fnd.(jb.q) ∨ jb.(jb.q) = q .
(fi-JB) fincr.p ⇒ (p, q) ∈ JB∗ .
(fi-up) fincr.p ⇒ up.∞.q .
(Goal) term.q ⇒ ((r, s) ∈ MST ≡ s ∈ {ib.r} ∪ branch.r) .
(In*br) init at q ⇒ q ∈ branch.(ib.q) .
(In*C) init at q ⇒ (connect, q) not-at r .
(In*CC) init at q ⇒ (connect, ib.q) not-at q .
(In*Ch) init at q ⇒ change not-at q .
(In*cr) init at q ⇒ ib.(ib.q) 6= q .
(In*Re) init at q ∧ mar.q ⇒ (report, ib.q) at q .
(Low-br) q ∈ Low ∧ r ∈ branch.q ⇒ r ∈ Low .
(Low-cr) DIS ⇒ (∃ p ∈ Low :: ib.p ∈ Low ∧ ib.(ib.p) = p ∧ (ib.p 6= p) .
(Low-fn) DIS ∧ q ∈ Low ⇒ ¬fnd.q .
(Low-ib) DIS ∧ q ∈ Low ⇒ ib.q ∈ Low .
(Low-te) DIS ∧ q ∈ Low ⇒ te.q = q .
(Re*cr) (report, ib.q) at q ∧ ib.(ib.q) = q ∧ mar.q ∧ bw .q <∞

⇒ bw .q 6= bw .(ib.q) .
(report, r) at q ⇒ w.(q, r) <∞ .

(Re-fi) (report, ib.p,∞) at p ∧ bw .p =∞ ∧ ¬fnd.p ∧ mar.p
⇒ fincr.p .

(Re*ib) (report, q) at r ⇒ ib.q = r ∨ ib.r = q .
(Stab) predicate (x, y) ∈ JB∗ is stable.
(Thm5) (q, r) ∈ JB∗ ∧ jb.(jb.q) = q

⇒ ll.r ≤ ll.q ∧ (ll.r = ll.q⇒ Ci.r = Ci.q) .

79

(Thm6) jb.(jb.p) = p 6= jb.p ∧ up.v.p ∧ up.v.(jb.p)
⇒ ((p, q) ∈ JB∗ ⇒ up.v.q) .

(Thm6C) change at p ∧ (p, q) ∈ JB∗ ⇒ ¬fnd.q ∧ bw .p ≤ bw .q .
(Thm6T) fincr.p ∧ (p, q) ∈ JB∗ ⇒ up.∞.q .
(tm-hi) term.p ⇒ ll.q = LLBW .
(tm-idl) term.q ⇒ idle.q .
(tm-ms) term.p ∧ kw at q ⇒ kw ∈ {report,wakeup,halt,winit} .
(tm-opn) term.p ⇒ open.q .
(tm-Re) term.q ⇒ report not-at q .
(tm-Wi) term.p ∧ (winit, u) at q ⇒ u ≤ ll.q .
(Wi*) (winit, u) at q ∧ ll.q < u

⇒ ib.(ib.q) 6= q ∧ (connect, ib.q) not-at q
∧ (connect, q) not-at r ∧ change not-at q .

References

[ApO91] K.R. Apt, E.-R. Olderog: Verification of Sequential and Concurrent
Programs. Springer V. 1991.

[BoM88] R.S. Boyer, J Moore: A Computational Logic Handbook. Academic
Press, Boston etc., 1988.

[ChM88] K.M. Chandy, J. Misra: Parallel Program Design, A Foundation
(Addison-Wesley, 1988)

[ChG88] C. Chou and E. Gafni: Understanding and verifying distributed algo-
rithms using stratified decomposition. In Proceedings 7th ACM Sympo-
sium on Principles of Distributed Computing, 1988.

[CLR90] T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to algorithms.
The MIT Press, 1990.

[GHS83] R.G. Gallager, P.A. Humblet, P.M. Spira: A distributed algorithm for
minimum–weight spanning trees. ACM Trans. on Programming Lan-
guages and Systems 5 (1983) 66–77.

[Heh89] E.C.R. Hehner: Termination is timing.In J.L.A. van de Snepscheut
(ed.): Mathematics of Program Construction. Springer, 1989 (LNCS
375), pp. 36–47.

[Hes97a] W.H. Hesselink: A mechanical proof of Segall’s PIF algorithm. Formal
Aspects of Computing 9 (1997) 208–226.

[Hes97b] W.H. Hesselink: Theories for mechanical proofs of imperative pro-
grams. Formal Aspects of Computing 9 (1997) 448–468.

[Hes99] W.H. Hesselink: The verified incremental design of a distributed span-
ning tree algorithm: extended abstract. Formal Aspects of Computing
11 (1999) 45–55.

80

[Hes@] W.H. Hesselink: Web site: http://wimhesselink.nl/mechver/ghs.

[Jos92] M.B. Josephs. Receptive process theory. Acta Informatica 29 (1992)
17–31.

[KaM97] M. Kaufmann, J S. Moore: An industrial strength theorem prover
for a logic based on Common Lisp. IEEE Transactions on Software
Engineering bf 23 (1997) 203–213.

[Lyn89] N.A. Lynch: Multivalued possibilities mappings. In J.W. de Bakker,
W.-P. de Roever, G. Rozenberg (Eds.): Stepwise Refinement of Dis-
tributed Systems. LNCS 430, Springer V., 1990, pp. 519–543.

[OwG76] S. Owicki, D. Gries: An axiomatic proof technique for parallel pro-
grams. Acta Informatica 6 (1976) 319–340.

[SiB95] G. Singh, A.J. Bernstein: A highly asynchronous minimum spanning
tree protocol. Distrib. Comput. 8 (1995) 151–161.

[SdR94] F.A. Stomp, W.-P. de Roever: Principles for sequential reasoning about
distributed algorithms. Formal Aspects of Computing, 6(E), pp 1–70
(1994). Can be retrieved by downloading the file FACj-6E-p1.ps.Z in
directory pub/fac of ftp.cs.man.ac.uk.

[Tar83] R.E. Tarjan: Data structures and network algorithms. Society for In-
dustrial and Applied Mathematics 1983.

[Tel94] G. Tel. Distributed Algorithms. Cambridge University Press, 1994.

[WLL88] J. Welch, L. Lamport, and N. Lynch: A lattice-structured proof tech-
nique applied to a minimum weight spanning tree algorithm. In Pro-
ceedings 7th ACM Symposium on Principles of Distributed Computing,
1988.

[You97] W.D. Young: Comparing verification systems: interactive consistency
in ACL2. IEEE Transactions on Software Engineering 23 (1997) 214–
223.

[ZwJ93] J. Zwiers and W. Janssen: Partial order based design of concurrent
systems. In J. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,
Proceedings of the REX School/Symposium “A decade of concurrency”,
Noordwijkerhout, 1993, LNCS 803 , Springer Verlag, 1994, pp. 622–684.

81

