
whh 324a – 1

Refinement Verification of the Lazy Caching Algorithm

Wim H. Hesselink, 21st February 2006
Dept. of Mathematics and Computing Science, Rijksuniversiteit Groningen

P.O.Box 800, 9700 AV Groningen, The Netherlands
Email: wim@cs.rug.nl, Web: http://www.cs.rug.nl/~wim

Abstract

The lazy caching algorithm of Afek, Brown, and Merrit (1993) is a pro-
tocol that allows the use of local caches with delayed updates. It results
in a memory model that is not atomic (linearizable) but only sequentially
consistent as defined by Lamport. In Distributed Computing 12 (1999),
specifying and proving sequential consistency for the lazy caching algo-
rithm was made into a benchmark for verification models. The present
note contains such a specification and proof. It provides a simulation from
the implementation to the abstract specification. The concrete verification
only relies on the state space and the next-state relation. All behavioural
aspects are treated in theories independent of the specific algorithm. The
proofs of the underlying theories and of the concrete algorithm have been
verified with the proof assistant PVS.

Key words: Sequential consistency, cache coherence, mechanical verification,
simulation, weak fairness

1 Introduction

Lazy caching applies in a multiprocessor architecture that implements a shared
memory. For the sake of performance, different processors may rely on local
caches rather than inspecting or modifying the shared memory itself. Cache
coherence would imply that the system’s behaviour is logically indistinguishable
from a shared memory with atomic updates, the so-called serial memory. This
requirement, however, is under some circumstances inconvenient and stronger
than necessary.

Sequential consistency is a weaker alternative. A memory is said to be
sequentially consistent iff every behaviour xs of it allows a behaviour ys of the
serial memory, such that, for every process p, the projections xs|p and ys|p
are equal. In other words, the processes cannot distinguish the memory from a
serial one. The difference becomes apparent when the system is equipped with a
central clock or some other synchronization primitive. Then it turns out that, in
a sequentially consistent memory, processes can read obsolete values, i.e., values
for which another process has successfully completed a modification command.
For many purposes, however, sequential consistency is good enough. Since strict
synchronization hampers performance, a sequentially consistent memory may
have better average performance than serial memory.

The lazy caching algorithm is an implementation of sequentially consis-
tent memory proposed in [ABM93]. Inspired and introduced by the late Rob
Gerth [Ger99], the algorithm was studied in various formalisms in [Bri99, Gra99,

whh 324a – 2

JPZ99, JPR99, LD99, LLOR99]. In [Aro01], it was verified with the proof assis-
tent PVS [OSRSC01] with a proof based on reordering of execution sequences
using timestamps.

The present paper contains a refinement proof of the algorithm that has
also been verified with PVS. Our specification of sequential consistency is a
simplification of the one of [LLOR99]. We follow and extend [ABM93] in the
choice of history variables.

We use a form of refinement calculus [Hes05a] based on [AL91], also inspired
by TLA [Lam94]. The approach is related to UNITY [CM88] and linear tem-
poral logic [MP92]. For instance, like in UNITY, we use ordinary assignments
rather than primed variables to specify computation steps. Unlike TLA, but
just as is usual in ordinary mathematics, the translation to a completely for-
mal system is kept behind the scenes, but in our case it can be inspected by
consulting the PVS proof script.

In [ABM93], the operations of writing and reading were split in a request
for the action and a result or acknowledgement after the action. Gerth [Ger99]
simplifies this by regarding writing and reading as single transitions. Since we
want to model that the system to be implemented does not itself invent the ad-
dresses where it reads or writes, nor the values to be written, we follow [ABM93]
and split every process in two parts: an environment that nondeterministically
chooses where to read and write and what to write and a system component
that executes these requests. Extending [ABM93], we even allow this environ-
ment concurrent read and write requests that can be answered asynchronously
by the system components. Our problem is thus slightly more difficult than the
problem considered in [ABM93, Aro01, Bri99, Gra99, JPZ99, JPR99, LD99,
LLOR99].

After the introduction of history variables, the paper [ABM93] relies on the
analysis of complete behaviours to prove sequential consistency. Our specifica-
tion formalism and refinement approach enable us to avoid this. In this, our
approach is similar to [LLOR99]. We extend the concrete specification with
auxiliary actions to conform to the abstract specification. This is formalized by
the concept of simulations [Hes06]. The special case used here is that of split-
ting simulations, a variation of extension with stuttering variables as defined in
[LLOR99].

The final part of the correctness argument consists of a refinement mapping
from the specification that is obtained by extending the concrete specification
with auxiliary variables and auxiliary actions to the abstract specification. The
proof that this is indeed a refinement mapping, has a safety part that is essen-
tially trivial and a progress part that is critical. At this point, we use and extend
the rules for “leads-to” introduced in [CM88], rather than relying on straight
temporal reasoning as [LLOR99] does. Another difference with [LLOR99] is
that our proof is complete in the sense that it is a report of a complete mechan-
ical verification with the proof assistant PVS, whereas the proof in [LLOR99] is
explicitly incomplete.

Verification with a proof assistant like PVS should be regarded as a method
to completely and convincingly prove a mathematical assertion. During the

whh 324a – 3

development of the proof, the tool assists by highlighting proof obligations and
exposing faulty deductions. Since clumsy proof efforts are very time consuming
(for the human user) and often fail, using a proof assistant forces us to strive for
elegant proofs. After completion of the proof, the proof script in combination
with the tool is a witness for the validity of the assertion and its proof.

Methodological contributions. We treat all behavioural aspects in theo-
ries that are independent of the algorithm under investigation. The verifications
at the concrete level are only connected with the state space and the next-state
relations, i.e., with single steps of the algorithm. In particular, we do not reorder
the histories of the concrete algorithm as is done in [ABM93, Aro01].

Our specification of sequential consistency is a simplification of the one of
[LLOR99]. We justify it by relating it to the verbal definition of sequential
consistency. The lazy caching algorithm inspired us to introduce splitting simu-
lations [Hes06]. It now serves as a first case study for their application. In this
case, proving the progress properties is critical. Here we extend concepts and
results of [CM88].

Overview. Section 2 contains the introduction to the specification formal-
ism and to our use of temporal logic. In Section 3, we formalize the memory
and its sequential consistency in an abstract specification Kab, which is closely
related to the specification used by [LLOR99].

In Section 4, we introduce strict simulations and general simulations, and
the splitting versions of them, to validate implementation relations. For the
proofs of the nontrivial results of Section 4, we refer to the companion papers
[Hes06, Hes05b]. Section 5 contains the lazy caching algorithm of [ABM93],
modelled as a concrete specification K0. We form a relation Fca between the
state spaces of K0 and the abstract specification Kab, and claim in Theorem 4
that Fca is a simulation from K0 to Kab.

In Section 6, we extend the lazy caching algorithm with history variables to
a specification K1, and derive a host of invariants for it. In order to come closer
to the abstract specification, we then add some more auxiliary variables and
some auxiliary steps to obtain a specification K2. The relationship from K0 to
K2 is proved to be a splitting simulation.

In Section 7, we define and extend the relation “leads-to” of [CM88], and
state a number of laws for it. In Section 8, we first restrict specification K2 by
means of the invariants to a specification K3. We then prove that K3 satisfies the
progress conditions postulated for the abstract specification Kab. This enables
us to define a refinement mapping from K3 to Kab. By composition, this yields
a simulation from K0 to Kab. We finally prove that Fca is a simulation from K0

to Kab, as claimed in Theorem 4, by proving that it contains this composition.
In Section 9, we briefly describe the mechanical verification, which consists

of a hierarchy of PVS theories that proves the results of this paper and its
companion [Hes06]. Conclusions are drawn in Section 10.

whh 324a – 4

2 Specifications

In this section, we present our formalism for specifications, which is based on
[AL91]. If X stands for the state space, predicates on X correspond to sets of
states, relations over X correspond to possible state transformations, computa-
tions give rise to infinite sequences over X. A specification is a state machine
over X with a supplementary property to specify progress.

2.1 Predicates, Subsets, Products, and Relations

A predicate (boolean function) on a set X is identified with the subset of X
where the predicate holds. We can therefore identify conjunction (∧) and dis-
junction (∨) with intersection (∩) and union (∪), respectively. Negation (¬)
is the same as complementation with respect to X. Implication is the set op-
eration with (U⇒V) = (¬U ∨ V). On the other hand, U ⊆ V expresses that
predicate U is stronger than predicate V , i.e., that (U⇒V) = X.

Just as in the language of the proof assistant PVS, square brackets are used
to denote Cartesian products and the components of a Cartesian product are
numbered from 1. So, e.g., if x ∈ [A,B, C], then x = (x1, x2, x3) with x1 ∈ A,
etc.

A binary relation on a set X is identified with the set of pairs that satisfy
the relation; this is subset of the Cartesian product X2 = [X, X]. We write 1
for the identity relation of X. If A is a binary relation on X and Q is a predicate
on X, its weakest precondition is defined by

wp(A,Q) = {x | ∀ y : (x, y) ∈ A ⇒ y ∈ Q} .

A special case is disabled(A) = wp(A, ∅).

2.2 Temporal Formulas

We write Xω for the set of infinite sequences on X, which are regarded as
functions N → X. For a sequence xs, we write Suf (xs) to denote the set of its
(infinite) suffixes. If P is a set of sequences, the sets 2P (always P), and 3P
(sometime P) are defined by

xs ∈ 2P ≡ Suf (xs) ⊆ P ,
3P = ¬2¬P .

So, xs ∈ 2P means that all suffixes of xs belong to P , and xs ∈ 3P means that
xs has some suffix that belongs to P .

For U ⊆ X, we define the subset [[U]] of Xω to consist of the sequences
whose first element is in U . For a relation A on X, we define the subset [[A]]2
of Xω to consist of the sequences that start with an A-transition. So we have

xs ∈ [[U]] ≡ xs(0) ∈ U ,
xs ∈ [[A]]2 ≡ (xs(0), xs(1)) ∈ A .

whh 324a – 5

In temporal logic, these operators are usually kept implicit.
The weak fairness set WF(A) of a relation A is defined to consist of the

sequences that take infinitely many A transitions if A is in some suffix always
enabled. Following Lamport [Lam94], we use the formal definition

WF(A) = 23[[disabled(A)]] ∨ 23[[A]]2 .

A sequence ys is defined to be a stuttering of a sequence xs, notation xs � ys,
iff ys can be obtained from xs by replacing its elements by positive iterations of
them, so that v = xs(n) is replaced by vd(n) for some function d : N → N+. For
example, if, for a finite list vs, we write vsω to denote the sequence obtained
by concatenating infinitely many copies of vs, the sequence (aaabbbccb)ω is a
stuttering of (abbccb)ω. See [Hes06], Section 6, for a formalization of �.

A subset P of Xω is called a property [AL91, Hes05a] iff it is insensitive to
stutterings, i.e., if (xs ∈ P) ≡ (ys ∈ P) whenever xs � ys. If P is a property,
then 2P , and 3P , and ¬P are properties. The conjunction and disjunction of
properties is a property. [[U]] is a property for every U ⊆ X. If A is a reflexive
relation on X, then 2 [[A]]2 is a property. If A is irreflexive, then 3 [[A]]2 is a
property. It follows that WF(A) is a property for every irreflexive relation A.

If X has more than one element, not every subset of Xω is a property. For
example, the set 23 [[1]]2, which consists of the sequences that stutter infinitely
often, is not a property.

2.3 Specifications and Programs

Following [AL91], a specification is defined to be a tuple K = (X, Y,N, P) where
X is the state space, Y ⊆ X is the set of initial states, N ⊆ X2 is the next-state
relation and P is the supplementary property. Relation N is required to be
reflexive in order to allow stutterings. P is a subset of the set Xω of the infinite
sequences of states, which is required to be a property.

We define an initial execution of K to be a sequence xs over X with xs(0) ∈ Y
and such that every pair of consecutive elements belongs to N . A behaviour of
K is an infinite initial execution xs of K with xs ∈ P . We write Beh(K) to
denote the set of behaviours of K. It is easy to see that

Beh(K) = [[Y]] ∩2[[N]]2 ∩ P .

A state x ∈ X is said to be occurring iff x = xs(n) for some behaviour xs
of K and some number n. A subset J of X is called an invariant of K iff J
contains all occurring states. A subset J is called inductive for K if Y ⊆ J and
J ⊆ wp(N, J). It is well known and easy to prove that every inductive subset
of X is an invariant.

We use specifications to model concurrent systems with processes that act
on shared variables and also have private variables. In this setting, a state of
the system is given by the values of all variables and the state space X is the
set of all states.

We declare shared variables with the keyword var and write them in type
writer font. Private variables are slanted and declared with the keyword privar.

whh 324a – 6

Outside of the programs, a private variable v of process p is denoted by v.p.
Indeed, formally, a private variable is treated as a (modifiable) function from
process identifiers to values. In the program, we use self to denote the identifier
of the acting process.

The initial values of the variables are given at the declaration. The next-
state relation N is given as a program in guarded command notation, where we
keep the possibility of stuttering steps implicit. A construct of the form

(W) whenever
[] Ui → Ai ;
end

denotes a next-state relation that is the union of the identity relation 1 with
the sets Ai ∩ [Ui, X]. So, it is a nondeterminate choice between the guarded
commands Ui → Ai, which are taken atomically and repeatedly. A parallel
composition of such constructs (W) denotes the union of their next-state rela-
tions. The difference with Dijkstra’s do od notation is that the do od construct
terminates when none of the guards hold, whereas (W) never terminates. When
none of the guards hold, the construct (W) just blocks waiting for some other
component to modify a guard. We omit the guard Ui when it equals the predi-
cate true, i.e. the set X.

The supplementary property is given separately by means of some temporal
logic formula.

2.4 Additional Notations

In the description of the algorithms, we use the following notations.
If T is a type, we write T⊥ for the extension T ∪ {⊥} of type T with a new

symbol ⊥ that is used for “undefined” or null. We write T ∗ to denote the
type of the finite lists (sequences) over T . We write ε to denote the empty list.
We write last(xs) for the last element of a nonempty finite list xs. We write
add(xs, x) for the command to append element x at the end of the finite list xs.
For a nonempty list xs, we use the command pop(xs) to return and remove the
head of the list. The length of xs ∈ T ∗ is denoted by #xs. We write xs(i) for
the i-th element of list xs, starting from 0, and provided i < #xs.

3 Specifications of Memory

A memory is a system with one shared array variable declared by:

type Memory = array Address of Data ;
var memA : Memory := mem0 .

In a first approximation, the memory can be used by a system AuS of processes
p that read and write at various addresses according to

whh 324a – 7

AuS.p : whenever
[] choose a ∈ Address ; choose d ∈ Data⊥ ;

if d 6= ⊥ then memA(a) := d
else d := memA(a) end ;

end .

Here, the then branch stands for writing into memory, and the else branch
reads from memory. Recall from 2.3 that the whenever clause models a non-
terminating program in which the guarded statements are executed atomically
and repeatedly, whenever enabled. Autonomous system AuS is not very useful,
since the processes are allowed to decide for themselves where to read and write
and what to write.

3.1 The Environment and the Serial Memory

In order to model that the memory has to serve requests from clients that it
does not control, we delegate such requests to an environment. Every client
process p is split into two parts: an environment Env .p that generates the
requests, and a system component CoS.p that executes them. These parts
have the same private variables. We provide specifications for Env and CoS.
The implementation consists of a concrete program that combined with Env
implements the abstract combination of Env and CoS.

We declare private variables addr, ar, and val to hold the requests generated
by the environment, and a private variable result for the result of the read action.

privar addr, ar : Address⊥ ;
privar val, result : Data .

Here, addr 6= ⊥ means that there is a request to write value val at address addr.
If ar 6= ⊥, this means a request to read the value stored at address addr and to
assign it to result.

We first assume that the environment components are serial in the sense that
they make no concurrent write and read requests. They are therefore modelled
by

EnvS.p : whenever
[] addr = ⊥ ∧ ar = ⊥ → choose addr ∈ Address , val ∈ Data ;
[] addr = ⊥ ∧ ar = ⊥ → choose ar ∈ Address ;
end .

The serial memory system answers the write requests in Wr and the read requests
in Rd, according to

CoS.p : whenever
Wr [] addr 6= ⊥ → memA(addr) := val ; addr := ⊥ ;
Rd [] ar 6= ⊥ → result := memA(ar) ; ar := ⊥ ;

end .

whh 324a – 8

The progress condition is that all write and read requests are eventually an-
swered:

(SF0) ∀ q : 2 3 [[addr.q = ⊥]] ,
(SF1) ∀ q : 2 3 [[ar.q = ⊥]] .

This concludes specification SM of the serial memory.

3.2 The Asynchronous Serial Memory

We prefer to allow a less deterministic environment that can make concurrent
write and read requests, according to

Env .p : whenever
[] addr = ⊥ → choose addr ∈ Address , val ∈ Data ;
[] ar = ⊥ → choose ar ∈ Address ;
end .

The asynchronous serial memory ASM is the parallel composition of the envi-
ronment components Env .p with the system components CoS.p for all p. We
retain progress condition (SF0), but weaken condition (SF1) to

(AF1) ∀ q : 2 3 [[ar.q = ⊥]] ∨ 2 3 [[Wr.q]]2 .

This says that, for every process q, every write request is eventually answered,
and that every read request is eventually answered unless the process itself
writes infinitely often.

We regard the requests as asynchronous, and not as a part of the resulting
operation. The memory is only serial with respect to the operations themselves.
Indeed, it is debatable whether the word serial for this kind of memory is
justified.

Note that in the system SM of Section 3.1, the conditions (SF1) and (AF1)
are equivalent since writing has the precondition addr.p 6= ⊥ which in SM
implies ar.p = ⊥.

3.3 Sequential Consistency

We now turn to distribution and sequential consistency. Recall that a memory
is sequentially consistent iff, for every behaviour xs of it, there is a behaviour ys
of the serial memory such that for every process q the projections of xs and ys
to q are equal. Since we choose to allow the environment Env of 3.2, we decide
to ignore the requests in these projections of xs and ys.

We formalize this version of sequential consistency by introducing auxiliary
variables loca.p and locs.p to stand for the respective projections.

type Action = [Address,Data,Bool] ;
privar loca, locs : Action∗ := ε .

whh 324a – 9

Reading a value d at an address a is represented by the action (a, d, false).
Writing a value d at address a is represented by the action (a, d, true).

As announced above, the environment Env stays the same. The interaction
with the environment is registered in loca and generated by

CoD.p : whenever
Wr [] addr 6= ⊥ → add(loca, (addr, val, true)) ; addr := ⊥ ;
Rd [] ar 6= ⊥ →

choose result ∈ Data ; add(loca, (ar, result, false)) ; ar := ⊥ ;
end .

The choice of result in Rd is nondeterminate, but is constrained by a hidden
autonomous serial memory, the actions of which are registered in locs:

AuH .p : whenever
[] choose a ∈ Address ; d ∈ Data⊥ ;

if d 6= ⊥ then memA(a) := d ; add(locs, (a, d, true))
else d := memA(a) ; add(locs, (a, d, false)) end ;

end .

Sequential consistency requires that, for every process q, the limits of loca.q
and locs.q when time goes to infinity, are equal. Since these lists change only
by growing, this condition is equivalent to

i < #loca.q ∧ i < #locs.q ⇒ loca.q(i) = locs.q(i) ,
lim #loca.q = lim #locs.q .

In words, the lists are always equal as far as defined, and in the limit they
have equal lengths (possibly ∞), for all q. We furthermore retain the progress
conditions (SF0) and (AF1).

3.4 A Less Redundant Specification

The specification of Section 3.3 asks us to keep the local histories in two sets of
growing lists that have to be equal as far as defined. We prefer to remove the
redundancy and eliminate loca or locs. Since the externally visible things enter
via loca, we eliminate locs. We do this by deciding that locs.q is always a prefix
of loca.q, say of length ser.q. The guarded commands of AuH .p now become
incrementations of ser.p. They are only enabled when ser.p < #loca.p. The
nondeterminacy of AuH is resolved by loca.p(ser.p), the action to be included
in locs.p. We thus replace AuH by a kind of delayed serialization:

privar ser : Nat := 0 ;
AuD.p : whenever
WrD [] ser < #loca ∧ loca(ser)3 →

memA(loca(ser)1) := loca(ser)2 ; ser++ ;
RdD [] ser < #loca ∧ ¬ loca(ser)3 ∧ memA(loca(ser)1) = loca(ser)2 →

ser++ ;
end .

whh 324a – 10

The boolean loca(ser)3 in the guards of WrD and RdD determines whether the
action is a write action or a read action. The third conjunct of the guard of RdD
is needed to keep locs a prefix of loca, and serves to justify the choice of result
in Rd.

To ensure consistent choices in Rd or, formally, to ensure that loca and locs
are equal in the limit, we need to impose the progress condition:

(AF2) ∀ q, n : 2 ([[#loca.q ≥ n]] ⇒ 3 [[ser.q ≥ n]]) .

Note that this is only a specification. The implementation is responsible for
consistent choices in Rd such that (AF2) can be established.

To summarize, our abstract specification Kab = (X, Y,N, P) consists of the
state space X and the initial set Y defined by the declarations of the shared
variable memA and the private variables addr, val, ar, result, and loca. The
next-state relation N is given as the union of the programs Env .p and CoD.p
and AuD.p, for all p ∈ Process. The supplementary property P is given as the
conjunction of the properties (SF0), (AF1), and (AF2).

Only the private variables addr, val, ar, and result are considered visible.
The variables memA, loca, ser are invisible specification variables that need not
be implemented.

Apart from our separation between system and environment, this specifica-
tion is essentially equivalent with specification SeqDB1 of sequential consistency
in [LLOR99], Figure 12. The remaining difference is that our lists loca are only
traversed by ser and not dequeued as in [LLOR99]. Since loca and ser are aux-
iliary variables, this is only a matter of convenience, not of space complexity.

Remarks. Strictly speaking, sequential consistency should be defined as in
Section 3.3, say with specification Ksc obtained from Kab by using AuH instead
of AuD. The arguments given above show that Kab implements Ksc. This is
enough for our purposes. It is not very difficult to prove that, conversely, Ksc
implements Kab. This would solve the question raised by Meritt in [Mer99] (p.
56). Since we do not need it, we leave this to the interested reader.

4 Simulations

Before presenting the lazy-caching implementation of specification Kab of Sec-
tion 3, we describe the formalism to express and prove correctness of imple-
mentations. The formalism we employ is a variation of the concepts introduced
in [AL91]. The idea is that every behaviour of the implementing specification,
say K, should correspond in a certain sense to some behaviour of the abstract
specification, say L.

We use simulations to formalize this. There are several ways to prove that a
relation is a simulation. The easiest way is to use that every refinement mapping
induces a simulation. It is well known, however, that refinement mappings
are often too specific to prove some implementation relation. Another way is
to extend the state space with history variables [AL91], as formalized in the

whh 324a – 11

concept of forward simulations. In practice, the traditional way to deal with
liveness (progress) for forward simulations is inconvenient. In our specific case,
we need to add not only auxiliary variables but also auxiliary steps to match
the concrete specification with the abstract one. We therefore propose splitting
simulations as an alternative to forward simulations.

4.1 Notations to Relate Specifications

If F is a relation between sets X and Y , we write Fω for the relation between
the sets of infinite sequences Xω and Y ω that is given by

(xs, ys) ∈ Fω ≡ (∀ i : (xs(i), ys(i)) ∈ F) .

If F is a binary relation between sets X and Y , and G is a binary relation
between Y and Z, the relational composition (F ;G) is defined to consist of the
pairs (x, z) such that there exists y with (x, y) ∈ F and (y, z) ∈ G.

When we have to consider more than one specification, the components of
a specification K = (X, Y,N, P) are denoted states(K) = X, start(K) = Y ,
step(K) = N and prop(K) = P .

4.2 Simulations

A strict simulation F from a specification K to a specification L (notation
F : K −. L) is defined to be a relation F between states(K) and states(L) such
that, for every xs ∈ Beh(K), there exists ys ∈ Beh(L) with (xs, ys) ∈ Fω.

This definition of strict simulation requires that the abstract behaviour
matches the concrete one step by step. Since the specifications allow stutter-
ing, this definition allows the abstract behaviour to stutter while the concrete
behaviour is doing “internal steps”. It does not allow the abstract behaviour
to do additional steps when the concrete behaviour happens to proceed. In the
present case, this strictness turns out to be inconvenient. Indeed, we need to
allow that the concrete behaviour occasionally takes fewer steps than the ab-
stract behaviour [Lam89]. We do this by defining (nonstrict) simulations in the
following way.

A relation F between the state spaces of specifications K and L is defined
to be a simulation [Hes06] from K to L, notation F : K −.. L, if for every
xs ∈ Beh(K) there exists a pair (xt, ys) ∈ Fω with xs � xt and ys ∈ Beh(L).

According to this definition, it is possible that the concrete behaviour xs
takes less steps than needed by the abstract behaviour. In fact, it suffices that
the abstract behaviour matches the steps of a slowed-down “virtual” concrete
behaviour xt.

It is clear that every strict simulation is a simulation since one can choose
xt = xs. Conversely, however, not all simulations are strict. It is easy to prove
that the relational composition of strict simulations is a strict simulation. Using
an adequate definition of relation �, it is also easy to prove that the relational
composition of simulations is a simulation [Hes05b].

whh 324a – 12

4.3 Refinement Mappings and Invariant Restrictions

If K and L are specifications, a function f : states(K) → states(L) is called
a refinement mapping [AL91] from K to L iff f(x) ∈ start(L) for every x ∈
start(K), and (f(x), f(x′)) ∈ step(L) for every pair (x, x′) ∈ step(K), and
f ◦ xs ∈ prop(L) for every xs ∈ Beh(K). In this situation we regard L as an
abstract specification implemented by a concrete specification K.

It is easy to see that, if f is a refinement mapping from K to L, the graph of
f is a strict simulation K −. L. We therefore also regard a refinement mapping
f as a strict simulation f : K −. L.

If J is an invariant of a specification K = (X, Y,N, P), we can restrict
the state space to the set J and thus form the restricted specification L =
(J, Y,N ∩ J2, P ∩ Jω). Clearly, every behaviour of K is also a behaviour of L.
Therefore, the identity relation 1 of J regarded as a relation between X and J is
a strict simulation 1 : K −. L. Specification L is called the invariant restriction
res(K, J).

4.4 Forward Simulations

A third easy method to prove that one specification simulates another is by
starting at the beginning and constructing the corresponding behaviour in the
other specification inductively. This idea is formalized in forward simulations
[HHS86, Hes05a, LV95, Mil71], defined as follows.

A relation F between states(K) and states(L) is called a forward simulation
from specification K to specification L iff

(F0) For every x ∈ start(K), there is y ∈ start(L) with (x, y) ∈ F .
(F1) For every pair (x, y) ∈ F and every x′ with (x, x′) ∈ step(K), there is y′

with (y, y′) ∈ step(L) and (x′, y′) ∈ F .
(F2) Every initial execution ys of L with (xs, ys) ∈ Fω for some xs ∈ Beh(K)
satisfies ys ∈ prop(L).

The following lemma [Hes05a] expresses soundness of forward simulations:

Lemma 1 Every forward simulation F from a specification K to a specification
L is a strict simulation F : K −. L.

A forward simulation F : K −. L is called a history extension iff it is the con-
verse of a refinement mapping L −. K. Usually, the state space of K is spanned
by some variables, the state space of L is spanned by the same variables together
with some auxiliary variables, and the refinement mapping from L to K is the
projection function that forgets the values of the auxiliary variables. Roughly
speaking, condition (F0) is a matter of consistent initialization, condition (F1)
says that the steps of K are faithfully represented by L, and condition (F2) says
that no additional progress conditions are imposed.

whh 324a – 13

4.5 Splitting Simulations

In practice, condition (F2) of section 4.4 is inconvenient since all fairness condi-
tions of the specifications K and L are accumulated before the supplementary
properties are compared. There even are cases where an obviously sound ex-
tension of a specification with a history variable is not a forward simulation, cf.
[Hes06]. It is therefore preferable to compare the fairness conditions of K and
L one by one.

A splitting of specification K is a family of relations (i ∈ N : A.i) such that

step(K) = 1 ∪ (
⋃

i ∈ N : A.i) ,
prop(K) = (

⋂
i ∈ N : i 6= 0 : WF(A.(i))) .

So, the alternatives A.i are subrelations of step(K) and all nonstuttering steps
of K belong to some alternative A.i. The positive alternatives are treated with
weak fairness.

Let K and L be specifications. A strict splitting simulation from K to L is
a relation F between the state spaces of K and L such that condition (F0) of
section 4.4 holds and that there exist splittings (i ∈ N : A.i) and (i ∈ N : B.i)
of K and L, respectively, that satisfy
(F1s) If (x, y) ∈ F and (x, z) ∈ A.i, there is w with (z, w) ∈ F and (y, w) ∈ B.i .
(F2s) If (x, y) ∈ F and i > 0 and x ∈ disabled(A.i), then y ∈ disabled(B.i).
In [Hes06], soundness of strict splitting simulations is proved, as expressed by

Theorem 2 Every strict splitting simulation is indeed a strict simulation.

The proof of this result is easy when one imposes the additional assumption
that the alternatives A.i with i > 0 are pairwise disjoint. We do not want
to make this assumption. The proof in [Hes06] therefore requires a kind of
scheduler.

When we need to augment the concrete specification with auxiliary steps to
match the abstract specification, the simulation cannot be strict anymore. We
therefore define general splitting simulations in the following way.

A splitting simulation from K to L is defined to be a relation F between the
state spaces of K and L such that condition (F0) of section 4.4 holds and that
K and L have splittings (i ∈ N : A.i) and (i ∈ N : B.i), respectively, such that
condition (F1s) holds and:
(F2ns) If (x, y) ∈ F and i > 0 and x ∈ disabled(A.i), then y ∈ disabled(B.i)
or there exists w with (y, w) ∈ B.i and (x,w) ∈ F .

There are two principal possibilities to satisfy condition (F2ns). Let al-
ternative i be called conservative iff, for every pair (x, y) ∈ F , we have that
x ∈ disabled(A.i) implies y ∈ disabled(B.i) as in (F2s). Let alternative i be
called stuttering iff, for every pair (x, y) ∈ F and every w with (y, w) ∈ B.i, we
have that (x, w) ∈ F . It is easy to see that (F2ns) holds if every alternative
i > 0 is conservative or stuttering. Clearly, however, condition (F2ns) is weaker
than this disjunction. Note that (F2ns) can hold while A.i is empty (i.e. absent)
and B.i is nonempty.

whh 324a – 14

The next result of [Hes06] expresses soundness of splitting simulations:

Theorem 3 Every splitting simulation is indeed a simulation.

Remark. In [Hes06], we also allow splittings where some alternatives have
strong fairness requirements. We do not need this here.

5 The Lazy Caching Algorithm

Lazy caching is a sequentially consistent memory system introduced in [ABM93].
The idea is that processes should delay communication as much as possible with-
out violating sequential consistency. The algorithm uses the private variables
addr, val, ar, and result, which are visible in the specification of section 3, and
the new private varibles declared by

type Pair = [Address,Data] ;
privar out : Pair∗ := ε ;
privar cache : array Address of Data⊥ := (λa : ⊥) .

The queues out serve for communication from the processes towards memory.
The variables cache hold the local caches. Values ⊥ in the caches represent
absence of values. The algorithm uses the shared variables declared by

var memC : Memory := mem0 ;
var in : array Process of Action∗ := (λq : ε) .

Variable memC serves as a central memory. We distinguish memC from memA to
allow different update moments. Array in holds queues for the communication
from memory towards the processes.

The implementation consists of the system components

LC .p : whenever
Wr [] addr 6= ⊥ → add(out, (addr, val)) ; addr := ⊥ ;
Rd [] inGuard → result := cache(ar) ; ar := ⊥ ;
MW [] out 6= ε →

(a, d) := pop(out) ; memC(a) := d ;
for all q do add(in(q), (a, d, q = self)) end ;

CU [] in(self) 6= ε → (a, d, b) := pop(in(self)) ; cache(a) := d ;
Mrq [] ar 6= ⊥ ∧ cache(ar) = ⊥ → add(in(self), (ar, memC(ar), false)) ;
MR [] choose a ∈ Address ; add(in(self), (a, memC(a), false)) ;
CI [] choose a 6= ar ; cache(a) := ⊥ ;

end .

As before, the alternatives Wr and Rd are the actions of writing and reading.
The guard for reading is

inGuard :
ar 6= ⊥ ∧ cache(ar) 6= ⊥ ∧ out = ε ∧ (∀ i :: ¬in(self)(i)3) .

whh 324a – 15

Firstly, the reading address must have been chosen and its value must be avail-
able. For the sake of sequential consistency, it is required that the process’s
out-queue is empty and that its in-queue contains no urgent items. An item
in the in-queue is urgent when it corresponds to a write action of the process
itself. Urgency is indicated by true at the third components of the in-items,
while it was a star (*) in [ABM93, Ger99].

Remark. One may propose to weaken inGuard by only requiring that address a
does not occur in out.p or in in(p) with in(p)3. This weakening is incorrect, as
is shown by the following scenario. Let x and y be locations with initial values
0. Let A and B be processes with the programs

A : x := 1 ; read(y) .
B : y := 1 ; read(x) .

Sequential consistency requires that one of the two assignments takes place be-
fore the other assignment and therefore before both read statements. Therefore,
at least one of the processes reads a value 1. The proposed weakening, however,
would allow that both processes read zeroes. 2

The alternative MW (memory-write) stands for the delayed action of trans-
ferring a queued element to the memory memC and to all in-queues. An item is
marked as urgent only in the in-queue of the writing process itself. The memory
memC is inspected in the memory-read alternatives Mrq and MR. In the Mrq, the
process asks for the value of its requested address. The local caches are modified
in the cache update command CU. The cache invalidate command CI models
that elements can be deleted from the cache. The condition a 6= ar is needed to
be able to guarantee progress for reading.

We assume that weak fairness holds for the commands Wr, Rd, MW, CU, and
Mrq of all processes q. This means that, whenever one of these commands is
continuously enabled for some process q from some point onward in a behaviour,
it is eventually taken. More precisely, we require the fairness condition:

(CF0) ∀ q ∈ Process : WF(Wr.q) ∧ WF(Rd.q) ∧ WF(MW.q)
∧ WF(CU.q) ∧ WF(Mrq.q) .

Note that this is indeed a property since the five commands are all irreflexive
(i.e. change something, when enabled).

We need not postulate fairness for MR and CI. Indeed, command Mrq was
introduced to postulate WF(Mrq.q) without imposing fairness for MR. One may
notice that fairness for Mrq and Rd is not needed in e.g. [LLOR99] (Fig. 6) since
there the read request is not separated from its response.

To summarize, the implementation is formalized as the specification K0 =
(X0, Y0, N0, P0) with the state space X0 and initial set Y0 given by the declara-
tions of the variables memC, in, addr, val, ar, result, cache, out. The next-state
relation N0 is given as the union of the programs Env .p and LC .p for all pro-
cesses p. The supplementary property P0 is (CF0). The challenge is to prove
that K0 implements specification Kab of Section 3.4.

whh 324a – 16

Since the visible variables of the specification are the private variables addr,
val, ar, and result, we define the binary relation Fca between the state spaces
of K0 and Kab to consist of the pairs of states (x, y) such that

∀ q ∈ Process : x.addr.q = y.addr.q ∧ x.val.q = y.val.q
∧ x.ar.q = y.ar.q ∧ x.result.q = y.result.q .

Here, we use x to refer to a state of implementing system K0 and we regard addr,
val, ar, and result, as fields of x that hold functions from processes to values.
Similarly, y refers to a state of the abstract system Kab, which also has such
fields. The states x and y are kept implicit in the discussion of the algorithm
below. They do appear, however, in the PVS modelling of the algorithm. Our
main result is:

Theorem 4 Relation Fca is a simulation from K0 to Kab.

The proof of this result is the contents of the remainder of this paper. Note
that relation Fca only relates the visible variables addr, val, ar, and result. The
only steps that modify these variables are Env , Wr, and Rd. The steps MW, CU,
Mrq, MR, CI of K0 are internal. The simulation in the Theorem is nonstrict to
give time for the delayed actions WrD and RdD. Since it is irrelevant, however,
when precisely these delayed actions happen, it is not unlikely that Fca is even
a strict simulation from K0 to Kab.

The strong condition inGuard, needed for sequential consistency, has the
effect that algorithm K0 does not guarantee separate progress for reading as
expressed in formula (SF1) of Section 3.1. It is not difficult to modify the
algorithm in such a way that (SF1) holds, but in our view this would complicate
the algorithm and its proof unnecessarily.

6 Auxiliary Variables for Lazy Caching

In order to prove that the lazy caching algorithm LC is sequentially consistent,
i.e., that relation Fca is a simulation from K0 to Kab, we extend specification K0

with auxiliary variables, primarily with history variables. Most of the history
variables of 6.1 and 6.2 were introduced in [ABM93] and were also used in
[Aro01].

6.1 Propagation of time stamps

We introduce a shared history variable

var time : Nat := 0

to serve as a time stamp of the version of memC. The time is broadcast in MW
via the in-queues. The declaration of in is therefore changed into

type Quad = [Address,Data,Bool,Nat] ;
var in : array Process of Quad∗ := (λq : ε) .

whh 324a – 17

Locally, the time is recorded in the private history variables lard (last read),
alt (alternative), and sno (a list of sequence numbers), as declared in

privar lard, alt : Nat := 0 ;
privar sno : Nat∗ := ε .

We retain the guarded commands Wr and CI of LC , and replace Rd, MW, CU, Mrq,
and MR as follows.

Rd1 [] inGuard →
result := cache(ar) ; add(sno, lard) ; ar := ⊥

MW1 [] out 6= ε →
(a, d) := pop(out) ; memC(a) := d ;
add(sno, time) ; time ++ ; alt := time ;
for all q do add(in(q), (a, d, q = self , time)) end ;

CU1 [] in(self) 6= ε →
(a, d, b, n) := pop(in(self)) ;
cache(a) := d ; lard := n

Mrq1 [] ar 6= ⊥ ∧ cache(ar) = ⊥ →
add(in(self), (ar, memC(ar), false, time)) ;

MR1 [] choose a ∈ Address ; add(in(self), (a, memC(a), false, time)) .

The paper [ABM93] now provides some important invariants. The private vari-
ables lard get their values via the fourth components of the elements of the
in-queues. This leads to the invariants

(Iq0) i < #in(q) ⇒ in(q)(i)4 ≤ time ,
(Iq1) lard.q ≤ time ,
(Iq2) i ≤ j < #in(q) ⇒ in(q)(i)4 ≤ in(q)(j)4 ,
(Iq3) i < #in(q) ⇒ lard.q ≤ in(q)(i)4 .

We need to complement these invariants by showing that the sequence in(q)()4
fills the range from lard.q to time, as expressed in the invariants

(Iq4) in(q) 6= ε ⇒ last(in(q))4 = time ,
(Iq5) i + 1 < #in(q) ⇒ in(q)(i + 1)4 ≤ in(q)(i)4 + 1 ,
(Iq6) in(q) = ε ⇒ lard.q = time ,
(Iq7) in(q) 6= ε ⇒ in(q)(0)4 ≤ lard.q + 1 .

Actually, we only need (Iq7), but the other three are used to prove the invariance
of (Iq7).

The private sequences sno.q serve as private sequence numbers. It is easy to
see that they are ascending and satisfy the invariants

(Jq0) i < #sno.q ⇒ sno.q(i) ≤ time ,
(Jq1) i < j < #sno.q ⇒ sno.q(i) ≤ sno.q(j) .

Preservation of (Jq0) follows from (Iq1). Preservation of (Jq1) under reading
follows from the following inequality, a variation of which occurs in [ABM93]:

whh 324a – 18

(Jq2) sno.q 6= ε ∧ lard.q < last(sno.q) ⇒ last(sno.q) < alt.q ,
(Jq3) lard.q < alt.q

⇒ (∃ i : i < #in(q) ∧ in(q)(i)3 ∧ in(q)(i)4 = alt.q) .

The ugly invariant (Jq3) implies that the last conjunct of inGuard guarantees
that every reading process has alt ≤ lard.

Proof structure. The predicates (Iq0) and (Iq4) are inductive. Preserva-
tion of (Iq1) follows from (Iq0); preservation of (Iq2) from (Iq0); preservation
of (Iq3) from (Iq1) and (Iq2); preservation of (Iq5) from (Iq4); preservation
of (Iq6) from (Iq4); preservation of (Iq7) from (Iq5) and (Iq6); preservation of
(Jq0) from (Iq1); preservation of (Jq1) from (Jq0), (Jq2), (Jq3); preservation of
(Jq2) from (Iq3); preservation of (Jq3) from (Iq3).

6.2 Propagation of data

In order to follow the data stream and the write actions during the computation
we introduce shared history variables

var hm : Memory∗ := add(ε, mem0) ;
var pm : [Process,Nat]∗ := ε .

Variable hm holds the consecutive values of memC. It is initialized with the
singleton list that only contains the initial value mem0 of memC and memA. When
process p writes a value into memC, the list pm is extended with the pair (p, i)
where i is the index of the time stamp in sno.p. Since memC is modified only in
MW, we need only to provide a new version of MW:

MW2 [] out 6= ε →
(a, d) := pop(out) ; memC(a) := d ;
add(sno, time) ; time ++ ; alt := time ;
for all q do add(in(q), (a, d, q = self , time)) end ;
add(hm, memC) ; add(pm, (self ,#sno − 1)) .

It is clear that we have the invariants

(Kq0) #hm = time + 1 ,
(Kq1) last(hm) = memC .

We now follow the data by proving the invariants

(Kq2) (a, d, b, n) = in(q)(i) ⇒ d = hm(n)(a) ,
(Kq3) lard.q < n < #hm ∧ hm(n− 1)(a) 6= hm(n)(a)

⇒ (∃ i : in(q)(i) = (a, , , n) ∧ (∀ j : j < i ⇒ in(q)(j)4 < n)) .

Predicate (Kq2) expresses that the elements of the in-queues faithfully represent
values that occurred at the moment indicated by the time stamp. Predicate
(Kq3) expresses that every modification of the memory, if not yet dealt with, is
represented in the in-queue and precedes any other occurrences of the same time
stamp. Note that we use underscores as wild cards. As a reviewer remarked,

whh 324a – 19

the last conjunct of (Kq3) is redundant because of (Iq2). This redundancy
makes the mechanical proof somewhat simpler, since it allows us to eliminate
the argument that a nonempty set of natural numbers has a least element.

We now can prove the first main invariant, which expresses that the value
in the cache corresponds to the value in the memory at “the time” of lard:

(Kq4) cache.q(a) = ⊥ ∨ cache.q(a) = hm(lard.q)(a) .

This predicate is threatened only by the modifications of the cache and lard
in command CU. If cache.q(a) is modified in CU, preservation of (Kq4) follows
from (Kq2). If cache.q(a) is not modified, but lard.q is modified, then lard.q is
incremented with 1 by (Iq3) and (Iq7). Preservation of (Kq4) then follows from
(Kq3) with n := lard.q + 1.

With respect to list pm we have the easy invariants

(Kq5) #pm = time ,
(Kq6) n < #pm ∧ (q, i) = pm(n) ⇒ i < #sno.q ∧ sno.q(i) = n .

Proof structure. Predicates (Kq0) and (Kq5) are inductive. Preservation
of (Kq1) follows from (Kq0); preservation of (Kq2) from (Iq0), (Kq0), (Kq1);
preservation of (Kq3) from (Iq0), (Iq3), (Kq0), (Kq1); preservation of (Kq4)
from (Iq1), (Iq3), (Iq7), (Kq0), (Kq2), (Kq3); preservation of (Kq6) from (Kq5).

6.3 Recording local history

We now deviate from [ABM93, Aro01]. In order to prove that the lazy caching
algorithm implements specification CoD, we introduce the private specification
variables loca in Section 3 as history variables. We postpone the treatment of
serialization. The variables loca are modified in the alternatives Wr and Rd in
the same way as in specification CoD:

Wr2 [] addr 6= ⊥ →
add(out, (addr, val)) ; addr := ⊥ ;
add(loca, (addr, val, true)) ;

Rd2 [] inGuard →
result := cache(ar) ; add(loca, (ar, cache(ar), false)) ;
add(sno, lard) ; ar := ⊥ .

It is easy to see that the length of loca is always the sum of the lengths of
sno and out. If loca holds a write action, the sequence sno increases or will
increase at that index. These facts are captured in the invariants

(Lq0) #loca.q = #sno.q + #out.q ,
(Lq1) i < k < #sno.q ∧ loca.q(i)3 ⇒ sno.q(i) < sno.q(k) .

In order to prove (Lq1), we introduce the invariants

(Lq2) i < #sno.q ∧ loca.q(i)3 ⇒ sno.q(i) < alt.q ,
(Lq3) alt.q ≤ time .

whh 324a – 20

The queues out.q transfer write commands from process q to memory, as
expressed in (Lq4). We introduce the invariant (Lq5) to express that actions
receive a sequence number that relates them to the global history as recorded in
the list hm. The effects of the write actions on the global history are expressed
in (Lq6).

(Lq4) i < #out.q ∧ out.q(i) = (a, d)
⇒ loca.q(i + #sno.q) = (a, d, true) ,

(Lq5) i < #sno.q ∧ n = sno.q(i) ∧ loca.q(i) = (a, d, false)
⇒ hm(n)(a) = d ,

(Lq6) i < #sno.q ∧ n = sno.q(i) ∧ loca.q(i) = (a, d, true)
⇒ hm(n + 1) = (hm(n) with (a) := d) .

We also need uniqueness of the writing sequence numbers, as expressed in

(Lq7a) i < #sno.q ∧ loca.q(i)3 ∧ j < #sno.r ∧ loca.r(j)3
∧ sno.q(i) = sno.r(j) ⇒ q = r ∧ i = j .

Since an invariant with four free variables (i, j, q, r) requires complicated proofs,
we introduced the auxiliary variable pm in section 6.2. It enables us to claim
the invariant

(Lq7) i < #sno.q ∧ loca.q(i)3 ∧ n = sno.q(i)
⇒ n < #pm ∧ pm(n) = (q, i) ,

which clearly implies (Lq7a). Actually, the implication in (Lq7) can be replaced
by an equivalence. The consequent implies the antecedent by (Kq6) and the
additional invariant

(Lq8) n < #pm ∧ pm(n) = (q, i) ⇒ loca.q(i)3 .

Proof structure. Predicates (Lq0) and (Lq3) are inductive. Preservation
of (Lq1) follows from (Jq3), (Lq0), (Lq2), (Lq3); preservation of (Lq2) follows
from (Jq0), (Lq0); preservation of (Lq4) from (Lq0); preservation of (Lq5) from
(Iq1), (Jq0), (Kq0), (Kq4), (Lq0), and (Lq4); preservation of (Lq6) from (Iq1),
(Jq0), (Kq0), (Kq1), (Lq0), (Lq2), (Lq3), and (Lq4); preservation of (Lq7) from
(Kq5) and (Lq0); preservation of (Lq8) from (Lq0) and (Lq4).

Summary. At this point, we have extended the implementation as speci-
fied in K0 at the end of Section 5 to a specification K1 = (X1, Y1, N1, P1) by
extending the state space with the auxiliary variables time, lard, alt, sno, in4,
hm, pm, and loca. Here in4 stands for the auxiliary fourth components of the
implementation array in. We have modified the next-state relation by replacing
Wr, Rd, MW, CU, Mrq, and MR by by Wr2, Rd2, MW2, CU1, Mrq1, and MR1, respec-
tively. The supplementary property P1 is the straightforward translation of P0.
All steps of K0 can also be done by K1 and their effect on the variables of K0

is unchanged. Therefore K1 is an extension with history variables. Indeed, it is
likely that K1 is a history extension of K0 in the sense of section 4.4. We did
not verify this formally since we take one step further in the next subsection.

Specification K1 satisfies the invariants (Iq*), (Jq*), (Kq*), and (Lq*), where
the star serves as a wild card.

whh 324a – 21

6.4 Inserting Serialization Points

In order to prove that the lazy caching algorithm implements sequential consis-
tency as specified in Section 3, we still need an abstract memory memA, private
variables ser, and serialization actions WrD and RdD, as in AuD.

Inspired by the invariants (Lq5) and (Lq6), we extend the state space with
the auxiliary variables to instantiate n and i in (Lq5) and (Lq6):

var cnt : Nat := 0 ;
privar ser : Nat := 0 .

Here cnt serves to count the total number of serialized write operations, while
ser.q holds the number of serialized operations of process q, and will play the
role of ser of 3.4. We therefore introduce the serialization actions

RdD [] ser < #sno ∧ sno(ser) ≤ cnt ∧ ¬ loca(ser)3 → ser ++ ;
WrD [] ser < #sno ∧ sno(ser) ≤ cnt ∧ loca(ser)3 →

ser ++ ; cnt ++ .

Notice that these additional actions do not affect the implementation variables
and project therefore to stutterings in the concrete behaviours.

In order to define a refinement mapping to Kab, we postulate the invariants

(Mq0) ser.q ≤ #sno.q ,
(Mq1) cnt ≤ time .

If loca.q(i)3 holds, ser.q can only pass i by establishing sno.q(i) < cnt. We
therefore have the invariant

(Mq2) i < ser.q ∧ loca.q(i)3 ⇒ sno.q(i) < cnt .

Since we want that all read and write actions are serialized by means of RdD
and WrD in the right order, we decide to keep the additional invariant

(Mq3) ser.q < #sno.q ⇒ cnt ≤ sno.q(ser.q) .

In order to preserve (Mq3) under read actions, we decide also to keep the in-
variant

(Mq4) cnt ≤ lard.q .

In order to preserve these invariants, we must strengthen the guard of WrD
considerably. We first abbreviate the guard of RdD by

RdDg .q ≡ ser.q < #sno.q ∧ sno.q(ser.q) ≤ cnt ∧ ¬ loca.q(ser.q)3 .

For WrD, we aim at a condition that is independent of the acting process, and
therefore we define the boolean state function

SSL = cnt < #pm ∧ (∀ q ∈ Process : ssl.q) , where
ssl.q = ¬RdDg .q ∧ cnt < lard.q .

whh 324a – 22

Suppose that SSL holds. We can write pm(cnt) = (p, i). Then (Kq6) and (Lq8)
imply that i < #sno.p and sno.p(i) = cnt and that loca.p(i)3 holds. Now
(Mq2) implies ser.p ≤ i. Therefore, (Jq1) implies sno.p(ser.p) ≤ cnt. Using the
definition of SSL, we get sno.p(ser.p) = cnt and loca.p(ser.p)3. By (Lq7), this
implies ser.p = i.

For every process q 6= p with ser.q < #sno.q, we have cnt ≤ sno.q(ser.q).
Moreover, cnt = sno.q(ser.q) would imply loca.q(ser.q) and hence p = pm(cnt)1 =
q by (Lq7). It follows that cnt < sno.q(ser.q) for all q 6= p with ser.q < #sno.q.
Also, cnt < lard.q for all q. This proves

(WD0) SSL ∧ q = pm(cnt)1
⇒ ser.q < #sno.q ∧ sno.q(ser.q) = cnt ∧ loca.q(ser.q)3 ,

(WD1) SSL ∧ q 6= pm(cnt)1
⇒ (ser.q < #sno.q ⇒ cnt < sno.q(ser.q)) ∧ cnt < lard.q .

It follows that execution of the body of WrD by process q would preserve (Mq3)
and (Mq4). We therefore replace WrD by

WrD2 [] SSL ∧ self = pm(cnt)1 → ser ++ ; cnt ++ .

Since we want all actions to be serialized, we postulate that the commands RdD
and WrD of all processes q are treated with weak fairness. We thus require

(CF1) ∀ q ∈ Process : WF(RdD.q) ∧WF(WrD.q) .

It turns out that the predicates (Mq0) up to (Mq4) are indeed invariants.
Proof structure. Predicate (WD0) is implied by (Jq1), (Kq6), (Lq7), (Lq8),

(Mq2), and (Mq3); predicate (WD1) is implied by (Lq0), (Lq7), and (Mq3).
Preservation of (Mq0) follows from (WD0); preservation of (Mq1) from (Kq5);
preservation of (Mq2) from (WD0), (Lq0), and (Mq0); preservation of (Mq3)
from (WD0), (WD1), (Jq1), (Lq0), (Lq1), (Mq0), (Mq1), and (Mq4); preserva-
tion of (Mq4) from (Iq3).

Summary. We have now extended specification K1 as described at the end
of Section 6.3 to a specification K2 = (X2, Y2, N2, P2) by extending the state
space X1 with the auxiliary variables cnt and ser. If N ′

1 is the extension of
N1 to the new state space that keeps the new variables unchanged, next-state
relation N2 is the union of N ′

1 with the union of the programs RdD.p and WrD2.p
for all processes p. The supplementary property P2 is the conjunction of the
translation of P1 to the new state space with the additional fairness property
(CF1). Specification K2 has the invariants (Iq*), (Jq*), (Kq*), (Lq*), and
(Mq*).

6.5 A Splitting Simulation

Let p20 be the projection function from X2 to X0 that retains the variables
introduced in section 5, and forgets the values of all auxiliary variables: time,
lard, alt, sno, in4, hm, pm, loca, ser, cnt. Let F02 be the converse relation that
consists of the pairs (x, y) with x = p20(y).

whh 324a – 23

Lemma 5 Relation F02 is a splitting simulation K0 −.. K2.

Proof. For simplicity, we assume that the set of processes is finite. Verification
of condition (F0) is straightforward. We now need to provide splittings (i ∈ N :
A.i) and (i ∈ N : B.i) of K0 and K2, respectively. Since it has more alternatives,
we start with K2. We define the unfair alternative B.0 ⊆ step(K2) by

B.0 = (
⋃

q ∈ Process : MR1.q ∪ CI.q ∪ Env .q) .

We define the other alternatives B.i via some enumeration of the relations Wr2.p,
Rd2.p, MW2.p, CU1.p, Mrq1.p, WrD2.p, RdD.p, where p ranges over the (finite) set of
the processes. The remaining sets B.i are left empty. It is straightforward to
verify that this defines a splitting of K2.

We form the corresponding splitting (i ∈ N : A.i) of K0, where the alterna-
tives corresponding to WrD2.p and RdD.p are left empty. Verification of condition
(F1s) for the various alternatives is straightforward from the definitions. The al-
ternatives Wr.p, Rd.p, MW.p, CU.p, Mrq.p are easily seen to satisfy condition (F2s)
and hence (F2ns). Since they only modify the auxiliary variables cnt and ser,
the alternatives WrD2.p and RdD.p are stuttering alternatives and therefore also
satisfy (F2ns). In conclusion, the proof is an administrative formality. 2

7 Progress Expressed by “Leads-to-or”

In order to relate specification K2 of section 6.4 to specification Kab of Sec-
tion 3, we need to show that K2 satisfies progress conditions analogous to the
requirements (SF0), (AF1), and (AF2) of Kab. For this purpose, we use the
concept of “leads-to” that was developed for UNITY in [CM88]. For the sake of
(AF1), we need to generalize “leads-to” by allowing an escape route. All results
claimed here have been verified mechanically with PVS.

Let a specification K = (X, Y,N, P) be given. A predicate Q ⊆ X is said
to lead to a predicate R (notation Q o→R) iff, in every behaviour, every state
where Q ∧ ¬R holds is eventually followed by a state where R holds. For a
relation A, we define that Q leads to R or A (notation Q o→A R) to mean that,
in every behaviour, every state where Q ∧ ¬R holds is eventually followed by a
state where R holds or by an A step.

We use the formal definitions

(Q o→R) ≡ Beh(K) ⊆ 2 ([[Q]] ⇒ 3[[R]]) ,
(Q o→A R) ≡ Beh(K) ⊆ 2 ([[Q]] ⇒ 3([[R]] ∨ [[A]]2)) .

It is easy to prove the following results:

Lemma 6 (a) Q o→R ≡ Q o→∅ R.
(b) If A ⊆ B and Q o→A R then Q o→B R.
(c) Relation o→A is reflexive and transitive.
(d) If Q ⊆ R then Q o→R.
(e) If J is an invariant and Q ∧ J o→R. Then Q o→R.
(f) (true o→A R) ≡ Beh(K) ⊆ (2 3 [[R]]) ∪ (2 3 [[A]]2) .

whh 324a – 24

The next result shows that, in order to prove that a disjunction leads to
something useful, it suffices to prove this for each of the disjuncts.

Lemma 7 Let I be a set and let (Q(i) : i ∈ I) be a family of predicates. Let R
be a predicate with Q(i) o→A R for all i ∈ I. Then (∃ i : Q(i)) o→A R.

The following facts can be easily deduced from the above ones.

Corollary 8 (a) If Q o→A S and R o→A S then (Q ∨R) o→A S.
(b) If R o→A S and Q ⊆ R ∨ S, then Q o→A S.
(c) If Q o→A R ∨ S and S o→A R ∨ T , then Q o→A R ∨ T .

Lemma 7 and Corollary (8)(c) together imply the following induction lemma:

Lemma 9 Let R and Q(k) be predicates for all k ∈ N. Assume Q(k+1) o→A R∨
Q(k) for all k. Then (∃ k : Q(k)) o→A R ∨Q(0).

The simplest way to use weak fairness is contained in the following result.

Lemma 10 Let relation B satisfy Beh(K) ⊆ WF(B). Then we have

true o→ {y | ∃ x : (x, y) ∈ B} ∨ disabled(B) .

Following [CM88], stability and, more generally, stable-unless relations are
introduced to generalize this result. A predicate Q is called stable iff it keeps
valid whenever it becomes valid in some behaviour. Predicate Q is called stable
unless R iff, whenever Q is valid and R is not, Q remains valid or R becomes
valid. Predicate Q is called stable unless R or A iff, whenever Q is valid and R
is not, Q remains valid or R becomes valid or an A step is taken.

We use the following formal definitions, which are marginally weaker but
much more practical. In these definitions, we let J range over the invariants of
specification K.

Q is stable ≡ ∃ J : Q ∧ J ⊆ wp(N,Q) ,
Q stable-unless R ≡ ∃ J : Q ∧ J ∧ ¬R ⊆ wp(N,Q ∨R) ,
Q stable-unless R or A ≡ ∃ J : Q ∧ J ∧ ¬R ⊆ wp(N \A,Q ∨R) .

It is easy to see that Q is stable if and only if it is stable unless false.
The primary way to prove leads-to relations is by means of the next result:

Lemma 11 Let predicates Q and R be given with Q stable unless R or A.
Let relation B satisfy Beh(K) ⊆ WF(B) and Q ⊆ R ∨ wp(B,R) and Q ∧
disabled(B) ⊆ R. Then Q o→A R.

Proof. Assume that Q does not lead to R or A. Then there is a behaviour xs
and a number n such that xs(n) ∈ Q and xs(k) /∈ R and (xs(k), xs(k + 1)) /∈ A
for all k ≥ n. Since Q is stable unless R or A, it follows by induction that
xs(k) ∈ Q for all k ≥ n. Since Q∧disabled(B) implies R, step B is continuously
enabled beyond n. Therefore weak fairness of B implies that there is k ≥ n with
(xs(k), xs(k + 1)) ∈ B. Therefore xs(k + 1) ∈ R, a contradiction.

whh 324a – 25

Another application of stable-unless is in the finite conjunction lemma:

Lemma 12 Let R(i) be predicates for all i ∈ I, where I is a finite set. Let Q
and T be predicates with Q o→A T ∨R(i) and R(i) stable unless T or A for all
i ∈ I. Then Q o→A T ∨ (∀ i : R(i)).

The Progress-Safety-Progress Rule of [CM88] also generalizes to leads-to-or:

Lemma 13 Let predicates Q, R, S, T be given with Q o→A R and S stable
unless T or A. Then Q ∧ S o→A (R ∧ S) ∨ T .

8 Construction of the Refinement Mapping

We now would like to construct a refinement mapping from specification K2 of
section 6.4 to specification Kab of Section 3.4. For this purpose, we need all
invariants obtained in Section 6. In other words, we form the conjunction Inv of
the invariants (Iq*), (Jq*), (Kq*), (Lq*), and (Mq*), and let K3 = res(K2, Inv)
be the corresponding invariant restriction, cf. section 4.3. Recall that the
identity of Inv forms a strict simulation 1 : K2 −. K3. We are going to construct
a refinement mapping K3 −. Kab.

The invariant (Mq1) enables us to define memA as the state function on K3

by

memA = hm(cnt) .

If we combine this function with the variables ar, result, addr, val, loca, ser,
we obtain a function ϕ on the state space of K3 with values in the state space
of Kab. This function ϕ forgets the variables of the concrete system that do
not occur in the abstract system. We claim that ϕ is a refinement mapping
K3 −. Kab. The remainder of this section is devoted to the proof of this.

8.1 Safety for the Refinement Mapping

To prove that this function is indeed a refinement mapping, we need to verify
three things. Firstly, the initial states of K3 are mapped to initial states of Kab.
This follows immediately from the construction.

Secondly, we need to prove that every step of K3 is mapped into a, possibly
stuttering, step of Kab. Since K3 and Kab use the same environment programs
Env .p, the steps of the environment clearly correspond. Using (Lq0) and (Mq0),
it is easy to see that every Wr2 step maps to a Wr step of CoD. The same holds for
steps Rd2. The steps MW2, MR1, Mrq1, CU1, and CI map to stuttering steps of Kab.
The proof for MW uses the invariants (Kq0) and (Mq1). The other four cases
are straightforward. The steps WrD in the two specifications correspond because
of (Lq6) and (WD0). The steps RdD correspond because of (Lq5) and (Mq3).
Mechanical verification of this essentially trivial step uncouvered a number of
minor inconsistencies.

whh 324a – 26

The third proof obligation is that every behaviour of specification of K2

is mapped to a behaviour of specification Kab. This requires to prove that
every concrete execution that satisfies the fairness properties (CF0) and (CF1)
is mapped to a sequence of abstract states that satisfies the fairness properties
(SF0), (AF1), and (AF2) of Section 3.

8.2 The System is Responsive

We begin with property (SF0) that 23[[addr.q = ⊥]] for every process q: all
behaviours satisfy always eventually addr.q = ⊥, i.e. true o→ addr.q = ⊥. This
follows directly from weak fairness of Wr.q and Lemma 10 with A := Wr.q.

The proof of property (AF1) is more complicated. It is based on weak
fairness of Mrq.q, CU.q, MW.q, and Rd.q. We first use weak fairness of Mrq.q and
Lemma 10 to obtain that always either ar.q becomes ⊥ or Mrq.q adds an item
w with w1 = ar.q to in(q), as formalized in

(0) true o→ ar.q = ⊥ ∨ (∃ k ∈ N : Pin(q, k)) , where
Pin(q, k) ≡ k < #in(q) ∧ in(q)(k)1 = ar.q .

We now use Lemma 11 and weak fairness of CU.q to obtain that such an item
moves forward in in(q), i.e., for every k,

Pin(q, k + 1) o→ ar.q = ⊥ ∨ Pin(q, k) .

By Lemma 9, this implies that

(1) (∃ k ∈ N : Pin(q, k)) o→ ar.q = ⊥ ∨ Pin(q, 0) .

By Lemma 11, weak fairness of CU.q also implies that Pin(q, 0) leads to ar.q =
⊥ ∨ cache.q(ar.q) 6= ⊥. In combination with (0), (1), and Corollary 8, this
gives

(2) true o→ ar.q = ⊥ ∨ cache.q(ar.q) 6= ⊥ .

So, true leads to ar.q = ⊥ or to the first two conjuncts of inGuard. In
order to use weak fairness of Rd, we need to cope with the other two conjuncts.
We first use weak fairness of MW.q and Lemma 11 to prove that out.q becomes
shorter unless q itself writes, as formalized in

Pout(q, k + 1) o→Wr.q Pout(q, k) , where
Pout(q, k) ≡ #out.q = k .

By Lemma 9, this implies that out.q becomes empty unless q itself writes:

(3) true o→Wr.q out.q = ε .

Generalizing the last two conjuncts of inGuard, we introduce

Qin(q, k) ≡ out.q = ε ∧ (∀ i : k ≤ i < #in(q) : ¬ in(q)(i)3) .

By Lemma 11, weak fairness of CU.q implies that

whh 324a – 27

Qin(q, k + 1, n) o→Wr.q Qin(q, k) .

By Lemma 9, this implies that out.q = ε o→Wr.q Qin(q, 0). By Corollary 8, this
combines with (3) to yield

(4) true o→Wr.q Qin(q, 0) .

We now apply Lemma 13 with S : cache(ar.q) 6= ⊥ and T : ar.q = ⊥ to obtain

cache(ar.q) 6= ⊥ o→Wr.q

(cache(ar.q) 6= ⊥ ∧ Qin(q, 0)) ∨ ar.q = ⊥ .

In combination with (2) and the definition of inGuard, we thus obtain

(5) true o→Wr.q inGuard.q ∨ ar.q = ⊥ .

Finally, Lemma 11 together with weak fairness of Rd.q implies

inGuard.q o→Wr.q ar.q = ⊥ .

By Corollary 8(c), this combines with formula (5) to yield

(6) true o→Wr.q ar.q = ⊥ .

Therefore, by Lemma 6(f), all behaviours satisfy (23[[ar.q = ⊥]])∨(23[[Wr.q]]2).
This proves (AF1).

8.3 All Write Commands are Serialized

As a preparation for the proof of (AF2), we now aim at progress for serialization
of the write commands. The write commands themselves are counted by time,
whereas their serialization are counted by cnt. We thus aim at the formula

(7) time ≥ m o→ time ≥ m ∧ cnt ≥ m .

This is proved by means of the predicates

TiCn(m, j) ≡ time ≥ m ∧ cnt ≥ j .

Since the lefthand side of (7) equals TiCn(m, 0) and the righthand side follows
from TiCn(m,m), it suffices to prove that TiCn(m, j) leads to TiCn(m, j + 1)
for all j < m.

For this purpose, we first claim that, for every process q,

(8) time ≥ m o→ lard.q ≥ m .

To prove this, we introduce the predicates

LaI(q, m, k) ≡
lard.q ≥ m ∨ (∃ i : i < k ∧ i < #in(q) ∧ in(q)(i)4 ≥ m) .

whh 324a – 28

The lefthand predicate of (8) implies (∃ k : LaI(q, m, k)) because of the invari-
ants (Iq4) and (Iq6). Clearly, LaI(q, m, 0) is equivalent to the righthand predi-
cate of (8). The induction step is that LaI(q, m, k + 1) leads to LaI(q, m, k), as
follows from weak fairness of CU for q, since CU is enabled if and only if in(q) is
nonempty, and since CU moves the elements of in(q) to the front. Then Lemma
9 implies (8).

We subsequently use Lemma 13 and formula (8) to show that TiCn(m, j)
leads to TiCn(m, j) ∧ lard.q ≥ m. This implies

(9) j < m ⇒ TiCn(m, j) o→ TiCn(m, j) ∧ lard.q > j .

We use weak fairness of RdD(q) to prove that ser.q ≥ k leads to ¬RdDg .q or
ser.q ≥ k + 1. In order to show that ser.q cannot grow indefinitely, we consider
the predicates

H(q, j) ≡ cnt ≥ j ∧ lard.q > j ,
H(q, j, n) ≡ H(q, j) ∧ (∀ i : n ≤ i < #sno.q ⇒ sno.q(i) > j) .

These predicates are stable because of the invariants (Iq1) and (Iq3). We then
use the PSP-rule to obtain

ser.q ≥ k ∧ H(q, j, n) o→ (¬RdDg .q ∨ ser.q ≥ k + 1) ∧ H(q, j, n) .

Using Lemma 9, we get

H(q, j, n) o→ cnt ≥ j + 1 ∨ (cnt ≥ j ∧ ssl.q) .

It is easy to see that H(q, j) = (∃ n : H(q, j, n)). Using Lemma 7, we therefore
have

H(q, j) o→ cnt ≥ j + 1 ∨ (cnt ≥ j ∧ ssl.q) .

Using formula (9) and transitivity, we obtain for j < n

TiCn(m, j) o→ cnt ≥ j + 1 ∨ (cnt ≥ j ∧ ssl.q) .

Predicate cnt ≥ j ∧ ssl.q is stable unless cnt ≥ j + 1, because of (Lq0), (Iq1),
and (Iq3), used at Rd, MW, and CU, respectively. Since the set of processes is
finite and nonempty, we can use Lemma 12 to obtain for j < n

TiCn(m, j) o→ cnt ≥ j + 1 ∨ (cnt ≥ j ∧ (∀ q : ssl.q)) .

In view of the guard of command WrD, we define the predicate C.p ≡ (cnt <
#pm∧p = pm(cnt)). The conjunction C.p ∧ cnt ≥ j is stable unless cnt ≥ j +
1. Also, cnt ≥ j∧ssl.q is stable unless cnt ≥ j+1. Therefore C.p∧cnt ≥ j∧ssl.q
is stable unless cnt ≥ j + 1. Using weak fairness of WrD(p), this implies

C.p ∧ cnt ≥ j ∧ (∀ q : ssl.q) o→ cnt ≥ j + 1 .

We now use Lemma 7 to obtain

(∃ p : C.p) ∧ cnt ≥ j ∧ (∀ q : ssl.q) o→ cnt ≥ j + 1 .

If j < m then TiCn(m, j) ⊆ TiCn(m, j +1)∨ (∃ p : C.p). Using stability and the
PSP-rule, we thus get that TiCn(m, j) leads to TiCn(m, j + 1) whenever j < m.
This concludes the proof of formula (7).

whh 324a – 29

8.4 Progress for Serialization

It remains to prove that the behaviours of specification K2 map to sequences
that satisfy (AF2), i.e., that #loca.q ≥ n leads to ser.q ≥ n. We first claim

(10) #loca.q ≥ n o→ #sno.q ≥ n .

This follows from Lemma 9 for the predicates

LoS(q, n, k) ≡ #loca.q ≥ n ∧ #sno.q ≥ n− k .

Indeed, #loca.q ≥ n is equivalent to (∃ k : LoS(q, n, k)) and the righthand side
of (10) follows from LoS(q, n, 0). Moreover, by (Lq0), the difference of #loca.q
and #sno.q equals #out.q. Since command MW of process q is enabled when
out.q is nonempty, and since MW decrements #out.q and increments #sno.q,
weak fairness of MW implies that LoS(q, n, k + 1) leads to LoS(q, n, k).

We now aim at a second application of weak fairness for RdD. So, in view of
the guard RdDg of command RdD, we introduce the predicates

Ubs(q, n,m) ≡ #sno.q ≥ n
∧ (∀ i : i < n ⇒ sno.q(i) ≤ m ∧ (loca.q(i)3 ⇒ sno.q(i) < m)) .

These predicates are stable since the lists sno.q and loca.q are only modified by
adding elements, while #sno.q ≤ #loca.q because of (Lq0). On the other hand,
using m := time and the invariants (Jq0), (Lq2), and (Lq3), one can prove that

(#sno.q ≥ n) ⊆ (∃ m : time ≥ m ∧ Ubs(q, n,m)) .

By formula (7) and Lemma 13, we have

time ≥ m ∧ Ubs(q, n,m) o→ cnt ≥ m ∧ Ubs(q, n,m) .

It follows from (Mq3) that we have

(ser.q < n ∧ cnt ≥ m ∧ Ubs(q, n,m)) ⊆ RdDg .q .

Lemma 11 with weak fairness of RdD.q, together with Lemma 9, yields

cnt ≥ m ∧ Ubs(q, n,m) o→ ser.q ≥ n .

Putting all things together, using transitivity and Lemma 7, we finally obtain
property (AF2) in the form

#loca.q ≥ n o→ ser.q ≥ n .

8.5 Binding It All Together

Since we have now proved the properties (SF0) and (AF1) in Section 8.2 and
(AF2) in Section 8.4, function ϕ maps every behaviour of K3 to a behaviour
of Kab. Therefore, ϕ is a refinement mapping K3 −. Kab. So, the graph Γ(ϕ)
of ϕ is a strict simulation K3 −. Kab. The composition (1; Γ(ϕ)) is therefore a
strict simulation K2 −. Kab, and hence a simulation K2 −.. Kab.

whh 324a – 30

In section 6.5, we formed a splitting simulation F02 : K0 −.. K2, which is
a simulation by Theorem 3. It follows that the composition (F02;1; Γ(ϕ)) is a
simulation K0 −.. Kab. It is easy to verify that (F02;1; Γ(ϕ)) ⊆ Fca. Therefore,
Fca is a simulation K0 −.. Kab. This concludes the proof of Theorem 4 in
Section 5.

9 Aspects of the Mechanical Proof

The complete proof of Theorem 4 has been verified with the proof assistant PVS
[OSRSC01]. The proof is available at www.cs.rug.nl/~wim/mechver/lazyCaching.
The total proof hierarchy comprizes 412 lemmas. The proof can be split into
three parts: the algorithm specific part, the theories about specifications and
simulations, and some algorithm specific auxiliary theories.

The algorithm specific part took the greater effort. Its mechanical verifica-
tion takes around 90% of the computing time. The core of the mechanical proof
is the verification of the invariants claimed in Section 6. This is done in one
PVS theory that contains 117 lemmas.

The second complicated effort is the verification of the progress properties of
the algorithm in the Sections 8.2, 8.3, and 8.4. They are verified in a theory that
holds 74 lemmas. The formalization of Section 5 and the verification of subsec-
tion 6.5 is done in one theory of 25 lemmas. Several small additional theories
are used to finally prove Theorem 4 that Fca is a simulation K0 −.. Kab.

The general foundation is an extension of the PVS proofs to verify [Hes05a].
It was developed after most safety properties had been established, and in par-
allel with the verification of the progress properties and the construction of the
simulation.

The relevant results of the Section 4, in particular the results on splitting
simulations in 4.5, are verified in two theories of 28 lemmas. Actually, these the-
ories are slightly stronger than needed in the present paper. They also justify
the results of the companion paper [Hes06]. They are based on three theories
about schedulers (48 lemmas), also presented in [Hes06]. The concepts devel-
oped in Section 2 and the lemmas developed in Section 7 are defined and verified
in two theories that together hold 28 lemmas.

10 In Conclusion

The lazy caching (LC) problem of [Ger99] inspired us to develop splitting sim-
ulations in [Hes06], just as the serializable database interface (SDI) problem of
[Sch92] inspired us to develop eternity extensions in [Hes02, Hes04, Hes05a].

The two problems LC and SDI are rather similar. Both are concerned with a
number of client processes that interact concurrently with some kind of shared
memory. Yet, whereas we needed eternity variables for SDI because of (our
modelling of) the atomicity of SDI, it turns out that eternity variables are

whh 324a – 31

not needed for LC. Similarly, the solution of LC in [LLOR99] uses stuttering
variables rather than the prophecy variables of [AL91].

Inspired by [AL91], we obtained in [Hes05b] the following semantic complete-
ness result: every simulation like K0 −.. Kab can be factored over a clocking
extension, an eternity extension, a stuttering history extension, and a refine-
ment mapping. Semantic completeness indicates proving power, but should not
be used to restrict the methodology. Indeed, in the present paper, the role
of the composition of three first extensions has been taken over by a splitting
simulation, which happens to be an extension but not a (stuttering) forward
simulation in the sense of [Hes05b]. Indeed, we regard condition (F2) of section
4.4 as methodologically inadequate since it is phrased in terms of behaviours.

The importance of the proof assistant PVS for the project should not be
underestimated. Indeed, handling the 33 invariants of Section 6 and the 26 leads-
to relations of section 8 would hardly be feasible without mechanical support.
Also, the proofs in [Hes06] of the two theorems of Section 4 are delicate enough to
justify the use of PVS. The results of Section 7 are relatively harmless and we did
them with PVS just for completeness. In mathematics much more complicated
theorems and theories have been proved without such safety belts, but when an
adequate proof assistant is available, it is advisable to use it.

Acknowledgements.
Constructive criticisms of four anonymous referees are gratefully acknowledged.

References

[ABM93] Y. Afek, G. Brown, and M. Merrit. Lazy caching. ACM Trans.
Program. Lang. Syst., 15:182–206, 1993.

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings.
Theor. Comput. Sci., 82:253–284, 1991.

[Aro01] T. Arons. Using timestamping and history variables to verify se-
quential consistency. In G. Berry, H. Comon, and A. Finkel, editors,
Computer Aided Verification, 13th International Conference, CAV
2001, Paris, volume 2102 of LNCS, pages 223–235, New York, 2001.
Springer.

[Bri99] E. Brinksma. Cache consistency by design. Distr. Comput., 12:61–
74, 1999.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design, A Founda-
tion. Addison–Wesley, 1988.

[Ger99] R. Gerth. Sequential consistency and the lazy caching algorithm.
Distr. Comput., 12:57–59, 1999.

[Gra99] S. Graf. Characterization of a sequentially consistent memory and
verification of a cache memory by abstraction. Distr. Comput.,
12:75–90, 1999.

whh 324a – 32

[Hes02] W.H. Hesselink. Eternity variables to simulate specifications. In
E.A. Boiten and B. Moeller, editors, MPC 2002, volume 2386 of
LNCS, pages 117–130, New York, 2002. Springer.

[Hes04] W.H. Hesselink. Using eternity variables to specify and prove a
serializable database interface. Sci. Comput. Program., 51:47–85,
2004.

[Hes05a] W.H. Hesselink. Eternity variables to prove simulation of specifi-
cations. ACM Trans. on Comp. Logic, 6:175–201, 2005.

[Hes05b] W.H. Hesselink. Universal extensions to simulate specifications. In
preparation, see www.cs.rug.nl/~wim/pub/mans.html, 2005.

[Hes06] W.H. Hesselink. Splitting forward simulations to cope with liveness.
Acta Inf., 2006. (to appear).

[HHS86] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined.
In B. Robinet and R. Wilhelm, editors, ESOP 86, volume 213 of
LNCS, pages 187–196, New York, 1986. Springer.

[JPR99] B. Jonsson, A. Pnueli, and C. Rump. Proving refinement using
transduction. Distr. Comput., 12:129–149, 1999.

[JPZ99] W. Janssen, M. Poel, and J. Zwiers. The compositional approach
to sequential consistency and lazy caching. Distr. Comput., 12:105–
127, 1999.

[Lam89] L. Lamport. A simple approach to specifying concurrent systems.
Commun. ACM, 32:32–45, 1989.

[Lam94] L. Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16:872–923, 1994.

[LD99] G. Lowe and J. Davies. Using CSP to verify sequential consistency.
Distr. Comput., 12:91–103, 1999.

[LLOR99] P. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching in
TLA. Distr. Comput., 12:151–174, 1999.

[LV95] N. Lynch and F. Vaandrager. Forward and backward simulations,
part I: untimed systems. Inf. Comput., 121:214–233, 1995.

[Mer99] M. Meritt. Introduction. Distr. Comput., 12:55–56, 1999.

[Mil71] R. Milner. An algebraic definition of simulation between programs.
In Proc. 2nd Int. Joint Conf. on Artificial Intelligence, pages 481–
489. British Comp. Soc., 1971.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer, New York, 1992.

whh 324a – 33

[OSRSC01] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Version 2.4, System Guide, Prover Guide, PVS Language Ref-
erence, 2001. http://pvs.csl.sri.com

[Sch92] F. B. Schneider. Introduction. Distr. Comput., 6:1–3, 1992.

