
whh 331b – 1

Splitting Forward Simulations to Cope with Liveness

Wim H. Hesselink, 17th January 2006
Dept. of Mathematics and Computing Science, Rijksuniversiteit Groningen

P.O.Box 800, 9700 AV Groningen, The Netherlands
Email: wim@cs.rug.nl, Web: http://www.cs.rug.nl/~wim

Abstract

In the literature, the conditions on history variables or forward simu-
lations that are related to liveness are expressed in terms of behaviours,
and are stronger than convenient and necessary. In this paper, we propose
alternative conditions on the simulation relation, which are expressed in
terms of the next state relation, and are closely tied to the weak or strong
fairness conditions of the specifications. The proof of soundness of this
proposal is based on a new theorem that asserts the existence of a strongly
fair scheduler for infinitely many alternatives.

The theory is extended to simulations in which the concrete specifi-
cation (occasionally) does fewer steps than the abstract specification it
implements.

Keywords: forward simulation, simulation, history variable, fairness, schedul-
ing.

1 Introduction

The verification of concurrent algorithms usually splits into two parts: safety
(nothing bad happens) and liveness (eventually something good happens). The
verification of safety is almost always critical. Indeed, concurrent algorithms
for which safety is easy to prove are usually not interesting. The importance
of liveness is less predictable: it is sometimes self-evident, sometimes easy, and
sometimes difficult. When verification of liveness is difficult, the designer or
verifier of the algorithm often feels satisfied with a proof of safety.

The above holds for hand-written proofs in a mathematical style, more for-
mal hand-written proofs in the style advocated by Lamport [Lam93], and also
for proofs with proof checkers or theorem provers.

The effect is that the formal theories are less well tested in their liveness
aspects than in their safety aspects. One of the central methods for the verifica-
tion of concurrent algorithms is the introduction of auxiliary or history variables
[OG76, AL91]. Recently, we discovered that the liveness conditions imposed on
history variables by [AL91, Hes05a] are too strong in the sense that they are not
satisfied in some cases where addition of a history variable is obviously sound.

These liveness conditions are expressed in terms of behaviours. One of the
central aims in concurrency verification is to reduce the role of behaviours in
concrete proofs and to concentrate the proof obligations on the next-state rela-
tion. This is also a compelling reason to reconsider these conditions.

Finally, even when applicable, these conditions require extensive verification
in situations where the human verifier is convinced of the soundness. One of

whh 331b – 2

the first rules of mechanical verification is that one should try to eliminate
fruitless proof obligations. Thus inspired by our wish for effective and complete
mechanical verification, we had to improve the theory.

We work in the theory of Abadi and Lamport [AL91], which is based on a
form of linear temporal logic. This is a refinement calculus in which programs
are concrete specifications that may refine (more) abstract specifications. There
are several refinement relations between specifications. In [Hes02, Hes04b], we
introduced simulations for the general case of trace compatability. The refine-
ment relation corresponding to the addition of history variables is called forward
simulation. Our aim is to show that the conditions on forward simulations are
stronger than convenient and necessary, and to propose splitting simulations as
alternatives.

In order to prove soundness of splitting simulations, i.e., that they are in-
deed simulations, we need the theoretical existence of strongly fair schedulers.
Technically, we obtained this result many years ago, but we never realized its
general abstract form and applicability. Here we present this result in its proper
form and with a simpler proof.

It is usually the case that the concrete behaviours do more steps than the ab-
stract behaviours they implement. This is easily incorporated in the formalism
by allowing the abstract behaviours to stutter arbitrarily. In [Lam89], Lamport
has argued forcefully that formalisms for refinement should also allow concrete
behaviours that take (occasionally) fewer steps than the abstract behaviours
they implement. Since this adds a technical complication to the theory, we have
been reluctant to accept this verdict, but recently we were forced to it by some
compelling cases. At this point, we therefore propose to weaken the definition
of simulation to something that can be described as trace compatability modulo
stutterings. Henceforward, the simulations of [Hes02, Hes04b] are called strict
simulations.

Indeed, in our treatment [Hes04a] of the lazy caching algorithm of [ABM93,
LLOR99], we need a nonstrict simulation, in which the abstract behaviours must
execute some additional actions sufficiently often, i.e., under weak fairness. To
handle this, we first tried to use a stuttering version of forward simulations,
but the solution turned out to be a nonstrict version of splitting simulations.
Actually, we invented the nonstrict splitting simulations first, and then saw that
strict splitting simulations are also useful. The present paper is thus a compan-
ion of the lazy caching paper [Hes04a]. Beyond what is needed in [Hes04a], we
incorporate strong fairness, since we expect that this will be needed in applica-
tions to refinement of atomicity.

Overview. In Section 2, we present our version of specifications and tempo-
ral logic. In Section 3, we treat strict simulations and forward simulations, and
give the example of an obviously sound history variable that is not justified by a
forward simulation. Section 4 is an intermezzo to define strongly fair schedulers
and to show their existence.

In Section 5, we define splittings of specifications and strict splitting simula-
tions. A specification has a splitting iff its supplementary property only consists
of weak and strong fairness conditions on alternatives. A strict splitting simula-

whh 331b – 3

tion is a relation between the state spaces of the specifications that respects the
alternatives in a certain sense. Nonstrict simulations and splitting simulations
are defined and treated in Section 6. We conclude in Section 7.

Contributions. The first point is the observation that the usual progress
conditions for history variables are inadequate. The concepts of (strict) splitting
simulations and their proofs of soundness are new. As noted by a referee, it
is important that the verification of a splitting simulation only requires the
next-state relation, whereas the verification of forward simulations requires the
analysis of executions and behaviours. It seems that the definitions of fair
schedulers and some of the results about them in Section 4 are new. All proofs
have been verified with the proof assistant PVS [OSRSC01].

2 Specifications and Temporal Logic

In this section, we present our formalism for specifications, which follows [AL91].
Unlike TLA [Lam94], different specifications usually have different state spaces.
If X stands for the state space, predicates on X correspond to sets of states,
relations over X correspond to possible state transformations, and computations
give rise to infinite sequences over X. A specification is a state machine over
some state space with a supplementary property to specify progress.

2.1 Predicates and Relations

A predicate (boolean function) on a set X can be identified with the subset
of X where the predicate holds. We can therefore identify negation (¬) with
complementation with respect to X.

A binary relation on a set X is identified with the set of pairs that satisfy
the relation; this is a subset of the Cartesian product X ×X = X2. We write
1 for the identity relation of X.

2.2 Temporal Formulas

Infinite sequences are used to represent consecutive values during computations.
We write Xω for the set of infinite sequences on X, which are regarded as
functions N → X. For a sequence xs, we write Suf (xs) to denote the set of its
(infinite) suffixes. If P is a set of sequences, the sets 2P (always P), and 3P
(sometime P) are defined by

xs ∈ 2P ≡ Suf (xs) ⊆ P ,
3P = ¬2¬P .

So, xs ∈ 2P means that all suffixes of xs belong to P , and xs ∈ 3P means that
xs has some suffix that belongs to P .

For U ⊆ X, we define the subset [[U]] of Xω to consist of the sequences
whose first element is in U . For a relation A on X, we define the subset [[A]]2
of Xω to consist of the sequences that start with an A-transition. So we have

whh 331b – 4

xs ∈ [[U]] ≡ xs(0) ∈ U ,
xs ∈ [[A]]2 ≡ (xs(0), xs(1)) ∈ A .

In temporal logic, the operators [[]] and [[]]2 are usually kept implicit. So, the
reader who wants to ignore them is in good company.

A sequence ys is defined to be a stuttering of a sequence xs, notation xs � ys,
iff xs can be obtained from ys by replacing some finite nonempty subsequences
ss of consecutive equal elements of ys with their first elements ss(0). For ex-
ample, if, for a finite list vs, we write vsω to denote the sequence obtained
by concatenating infinitely many copies of vs, the sequence (aaabbbccb)ω is a
stuttering of (abbccb)ω, i.e. (abbccb)ω � (aaabbbccb)ω.

A subset P of Xω is called a property [AL91, Hes05a] iff it is insensitive
to stutterings, i.e., if P (xs) = P (ys) whenever xs � ys. If P is a property,
then 2P , and 3P , and ¬P are properties. The conjunction and disjunction of
properties is a property. [[U]] is a property for every U ⊆ X. If A is a reflexive
relation on X, then 2 [[A]]2 is a property. If A is irreflexive, then 3 [[A]]2 is a
property.

If X has more than one element, not every subset of Xω is a property. For
example, the set 23 [[1]]2, which consists of the sequences that stutter infinitely
often, is not a property. For instance, if a 6= b, then (abb)ω ∈ 23 [[1]]2 and
(ab)ω /∈ 23 [[1]]2, while (ab)ω � (abb)ω.

The weak fairness set WF(A) of a relation A is defined to consist of the
sequences that take infinitely many A transitions if A is in some suffix always
enabled. Following [Lam94], we thus define

WF(A) = 23 [[A]]2 ∪ 23 [[disabled(A)]] , where
disabled(A) = {x | ∀ y : (x, y) /∈ A} .

Similarly, the strong fairness set SF(A) is defined to consist of the sequences
that take infinitely many A transitions if A is infinitely often enabled:

SF(A) = 23 [[A]]2 ∪ 32 [[disabled(A)]] .

If A is irreflexive, WF(A) and SF(A) are properties.

2.3 Specifications and Programs

Following [AL91], a specification is a tuple K = (X, Y,N, P) where X is the
state space, Y ⊆ X is the set of initial states, N ⊆ X2 is the next-state relation
and P is the supplementary property. Relation N is required to be reflexive in
order to allow stutterings. P is a subset of the set Xω of the infinite sequences
of states, which is required to be a property.

We define an initial execution of K to be a sequence xs over X with xs(0) ∈ Y
and such that every pair of consecutive elements belongs to N . A behaviour of
K is an infinite initial execution xs of K with xs ∈ P . We write Beh(K) to
denote the set of behaviours of K. It is easy to see that

Beh(K) = [[Y]] ∩2[[N]]2 ∩ P .

whh 331b – 5

We use specifications to model concurrent systems with shared variables and
processes that also have private variables. In this setting, a state of the system
is given by the values of all variables, and the state space X is the set of all
states.

When convenient, the components of a specification K = (X, Y,N, P) are
denoted states(K) = X, start(K) = Y , step(K) = N and prop(K) = P .

Example. Let m ∈ N be positive. Consider the specification K(m) given by

var j : N := 0 ;
do true → j := (j + 1) mod m od ;
prop: j changes infinitely often.

In such a program-like denotation, we keep the stuttering steps implicit. So we
have states(K(m)) = N, start(K(m)) = {0}, relation step(K(m)) consists of the
pairs (j, k) with k = (j + 1) mod m or j = k (stuttering). The supplementary
property is prop(K(m)) = 23[[j 6= j+]]2, where j+ refers to the value of j in
the next state.

Taking m = 3, the behaviours of K(3) are the stutterings of vs = (012)ω.
The other initial executions are the stutterings of the infinite sequences (012)k0ω,
and (012)k01ω, and (012)k012ω for k ∈ N. These are no behaviours since even-
tually j is constant in them. 2

A visible specification is a pair (K, v) where K is a specification and v is a
function from states(K) to some set of observations. Then v is called the obser-
vation function. A visible behaviour of (K, v) is a sequence vs of observations
such that vs � v ◦ xs for some behaviour xs.

Example. Let v : N → N be the observation function given by v(j) = j div 3.
The visible behaviours of K(15) are the stutterings of vs = (01234)ω. Notice
that vs itself is regarded as a visible behaviour even though, for every behaviour
xs, the sequence of observations v ◦ xs stutters at least twice at every symbol.
2

3 Implementations and Strict Simulations

Let (K, v) and (L,w) be visible specifications with observation functions to the
same set of observations. Then (K, v) is said to implement (L,w) iff every
visible behaviour of (K, v) is a visible behaviour of (L,w), see [AL91].

The easiest way to prove implementation relations between different speci-
fications is by means of refinement mappings. It is well known, however, that
refinement mappings are often too specific for this purpose.

Usually, we also need to extend the state space with history variables [AL91].
Sometimes, we even need prophecy variables [AL91] or eternity variables [Hes05a].
All these methods can be unified as strict simulations, which were introduced
in [Hes02, Hes05a].

whh 331b – 6

3.1 Refinement Mappings and Strict Simulations

If K and L are specifications, a function f : states(K) → states(L) is called
a refinement mapping [AL91] from K to L iff f(x) ∈ start(L) for every x ∈
start(K), and (f(x), f(x′)) ∈ step(L) for every pair (x, x′) ∈ step(K), and
f ◦ xs ∈ prop(L) for every xs ∈ Beh(K).

The idea of simulation is to generalize a refinement mapping to a binary
relation F between states(K) and states(L). For visible specifications (K, v) and
(L, w), such a relation F is called nondisturbing if F respects the observations
in the sense that v(x) = w(y) for all pairs (x, y) ∈ F .

We write Fω for the relation between infinite sequences given by

(xs, ys) ∈ Fω ≡ (∀ i : (xs(i), ys(i)) ∈ F) .

A relation F between states(K) and states(L) is called a strict simulation
from specification K to specification L (notation F : K −. L) if, for every
xs ∈ Beh(K), there exists ys ∈ Beh(L) with (xs, ys) ∈ Fω.

Since every function is a binary relation of a special kind, it is easy to see
that, if f is a refinement mapping from K to L, then f is a strict simulation
f : K −. L.

For visible specification (K, v) and (L,w) with some nondisturbing strict sim-
ulation K −. L, it is easy to prove that (K, v) implements (L,w), see [Hes05a],
Theorem 2.6. We are therefore interested in strict simulations only when they
are nondisturbing. The verification whether some relation is nondisturbing, is
usually trivial, but it requires explicit observation functions.

In the remainder of this paper, we therefore forget about the observations.
Of course, our results are only useful when observations are possible and when
the simulations are nondisturbing.

3.2 Forward Simulations

The easiest way to prove that one specification simulates another is by starting
at the beginning and constructing the corresponding behaviour in the other
specification inductively. This idea is formalized in forward simulations [HHS86,
LV95, Mil71], defined as follows.

A relation F between states(K) and states(L) is called a forward simulation
from specification K to specification L iff
(F0) For every x ∈ start(K), there is y ∈ start(L) with (x, y) ∈ F .
(F1) For every pair (x, y) ∈ F and every x′ with (x, x′) ∈ step(K), there is y′

with (y, y′) ∈ step(L) and (x′, y′) ∈ F .
(F2) Every initial execution ys of L and every behaviour xs of K, we have that
(xs, ys) ∈ Fω implies ys ∈ prop(L).

The following lemma [Hes05a] expresses soundness of forward simulations:

Lemma 1 Every forward simulation F from a specification K to a specification
L is a strict simulation F : K −. L.

whh 331b – 7

A forward simulation F : K −. L is called a history extension iff it is the con-
verse of a refinement mapping L −. K. Usually, the state space of K is spanned
by some variables, the state space of L is spanned by the same variables together
with some auxiliary variables, and the refinement mapping from L to K is the
projection function that forgets the values of the auxiliary variables. Roughly
speaking, condition (F0) is a matter of consistent initialization, condition (F1)
says that the steps of K are faithfully represented by L, and condition (F2) says
that no additional progress conditions are imposed.

The conditions (F0) and (F1) go back to [Mil71], but condition (F2) is added
in [AL91]. In almost all applications, safety is of primary importance. Progress
is often neglected or treated only informally. Therefore, there is not much
experience with condition (F2). Theoretically, condition (F2) is fully justified,
since it is strong enough for soundness, i.e. Lemma 1, and weak enough for
semantic completeness, cf. [AL91, Hes05a].

For practical applications, however, it is highly unsatisfactory that condition
(F2) is expressed in terms of executions and behaviours. It is preferable to
reduce the importance of executions or behaviours, and to rely on the next-
state relation as much as possible. A second reason to discard condition (F2),
is that it is stronger than convenient. This is shown in the next example.

3.3 A History Variable that Violates (F2)

The following example is a simplification of a cache updating algorithm. We
consider a program with two integer variables i and k, initially 0, given by

do
A : [] true → choose i ∈ {j | j 6= i ∧ k < j} ;
B : [] i ≤ k → choose i ∈ Z ;
C : [] k < i → k := i ;

od ;
prop: A and C are treated weakly fair.

Alternative A is always enabled. So, by weak fairness, step A is taken eventually.
When A is taken, it establishes k < i. Step A preserves k < i. Therefore, by
weak fairness, step C is taken eventually, increasing k and establishing k = i.
Whenever i ≤ k, step B can modify the value of i arbitrarily. In the cache
interpretation, A and B are abstractions of updates of the cache (A being an
update on request), while C corresponds to an inspection of the cache.

This program corresponds to a specification K with states(K) = Z× Z and
start(K) = {(0, 0)} and step(K) = 1 ∪ A ∪ B ∪ C and prop(K) = WF(A) ∩
WF(C), where A, B, C are regarded as binary relations on states(K) in the
natural way. For example, A consists of the pairs of pairs ((i, k), (j, k)) with
i 6= j ∧ k < j. Note that A and C are irreflexive, so that WF(A) and WF(C)
are properties.

When investigating specification K, it is natural to introduce an integer
history variable, say t, to count the number of times alternative A is taken. We
take t = 0 initially. We thus compare the above program with

whh 331b – 8

do
A′ : [] true → choose i ∈ {j | j 6= i ∧ k < j} ; t := t + 1 ;
B′ : [] i ≤ k → choose i ∈ Z ;
C ′ : [] k < i → k := i ;

od ;
prop: A′ and C ′ are treated weakly fair.

Let L be the corresponding specification, with the state space spanned by i, k,
and t. Note that A′, B′, C ′ represent binary relations on the state space of L. It
is clear that the projection function that deletes the third component of the state
forms a refinement mapping L −. K. Its converse relation cvf = cv(f) should
be a history extension K −. L. Indeed, one easily verifies that cvf satisfies the
conditions (F0) and (F1). It is also clear that cvf is a strict simulation: every
behaviour of K is easily transferred to L.

Yet, condition (F2) fails. Let ys be the initial execution of L obtained by
alternating steps B′ with i := k + 1 and C ′. We then have ys(2n) = (n, n, 0)
and ys(2n+1) = (n+1, n, 0). This execution is not a behaviour of L since step
A′ is always enabled and never taken. The projection of ys to the state space
of K, however, is a behaviour xs of K since the B steps taken are also A steps.
This shows that (F2) is violated.

At this point we pay the price for our formalism with unlabelled transitions.
The problem does not occur in formalisms where behaviours are sequences of
labelled transitions as e.g. [Jon91, JPR99]. Yet, we prefer unlabelled transitions
since we want to avoid the complications of renaming and hiding labels.

The crux of the example is that A and B overlap while A′ and B′ are disjoint.
Condition (F2) fails since relation cvf does not distinguish the alternatives A,
B, C, and therefore does not recognize the special relationships between A and
A′, B and B′, and C and C ′. We need a remedy that is able to recognize the
alternatives. It also turns out that, in case of overlapping alternatives, we need
a kind of fair scheduler.

Moreover, in cases where the concrete system occasionally does fewer steps
than the abstract system, we need some mechanism to insert abstract steps,
possibly under some fairness constraint. This is also a matter of scheduling. In
such cases, labelling the transitions would not help but only complicate.

4 Intermezzo: Existence of Fair Schedulers

Fairness conditions and fair schedulers are in some sense opposite sides of the
same coin. Fairness conditions are assumptions that constrain the nondetermi-
nacy of specifications. They can sometimes be justified by stochastic or physical
considerations. Fair schedulers are deterministic mechanisms that can serve to
prove satisfiability of fairness conditions (we come back to this in 5.1). They
are used in this paper since the claim that some relation is a (strict) simulation
poses a satisfiability problem.

A scheduler is a deterministic mechanism that can be repeatedly applied to
choose between a set of alternatives. To avoid that it always makes the same

whh 331b – 9

choice, the scheduler needs some kind of memory that is updated each time a
choice is made. Not all alternatives are always available. We therefore assume
that the scheduler’s decisions can also be based on a set of enabled alternatives.

The main goal of this section is to introduce strongly fair schedulers and to
prove their existence, but we also show that a strongly fair scheduler needs to
reckon with the set of enabled alternatives.

4.1 Formalization of Schedulers

We let A be the set of alternatives and P (A) be the set of subsets of A. A
scheduler is a triple (M, c, s) where M is a nonempty set, called the memory, and
c : M×P (A) → A is a function to choose the alternative and s : M×P (A) → M
is a function to choose the next memory state. The second argument of c and
s is regarded as the set of enabled alternatives. Thus, every memory transition
may depend on the current set of enabled alternatives.

The scheduler (M, c, s) is called strict iff c(m, p) ∈ p for every m and every
nonempty p. Although we strive for strict schedulers, it turns out that non-
strict schedulers are also useful since they can easily be made strict. Indeed,
if (M, c, s) is a scheduler, we can construct a strict variation (M, c′, s) of it by
defining

c′(m, p) = if p = ∅ ∨ c(m, p) ∈ p then c(m, p)
else some element of p end .

Let us say that an alternative is taken when it is chosen in an enabled situa-
tion. Choosing an alternative that is not enabled is considered harmless but
unproductive.

Repeated application of given scheduler (M, c, s) is modelled as follows. For
an initial state m ∈ M and an infinite sequence of enabling sets ps ∈ P (A)ω, we
define a sequence ss(m,ps) of memory states inductively by ss(m,ps)(0) = m
and ss(m,ps)(n + 1) = s(ss(m,ps)(n),ps(n)). The n-th choice is given by
cs(m,ps)(n) = c(ss(m,ps)(n),ps(n)). In this way, we obtain the infinite se-
quence cs(m,ps) ∈ Aω, which represents the sequence of chosen alternatives,
based on the memory initialization m and the invocations with ps(n) as consec-
utive enabling sets.

The fairness quality of the scheduler depends on the answer to the following
question. If alternative a ∈ A is enabled sufficiently often, will it be taken
sufficiently often? More precisely, if a occurs sufficiently often in a sequence of
enabling sets ps, will there be sufficiently many indices n with cs(m,ps)(n) =
a ∈ ps(n)? Depending on the interpretation of the words “sufficiently”, we thus
obtain the following concepts of weakly and strongly fair schedulers.

The scheduler (M, c, s) is called weakly fair iff every alternative that is even-
tually always enabled, is taken infinitely often. This is formalized in

WF: ∀ ps,m, a, n : (∀ k : n ≤ k ⇒ a ∈ ps(k))
⇒ (∃ k : n ≤ k ∧ cs(m,ps)(k) = a ∈ ps(k)) .

whh 331b – 10

The scheduler (M, c, s) is called strongly fair iff every alternative that is
enabled infinitely often, is taken infinitely often. This is formalized in

SF: ∀ ps,m, a : (∀ n : ∃ k : n ≤ k ∧ a ∈ ps(k))
⇒ (∀ n : ∃ k : n ≤ k ∧ cs(m,ps)(k) = a ∈ ps(k)) .

It is straightforward to prove:

Lemma 2 (a) Every strongly fair scheduler is weakly fair.
(b) If (M, c, s) is weakly or strongly fair, then every strict variation (M, c′, s) of
it has the same property.
(c) Let (M, c, s) be a scheduler such that the set {n | cs(m,ps)(n) = a} is infinite
for every m, ps, and a. Then (M, c, s) is weakly fair.

Example. An infinite “round robin” scheduler for A = N.
Let M consist of the pairs (i, j) with i ≤ j. The scheduler (M, c, s) is given

by

c((i, j), p) = i ,
s((i, j), p) = if i < j then (i + 1, j) else (0, j + 1) end .

This scheduler ignores its argument p and is therefore not strict. It can be de-
scribed as going round and round in ever growing circles. Every natural number
is chosen infinitely often. Therefore, Lemma 2(c) implies that the scheduler is
weakly fair. Since it can be made strict easily, we regard it as a useful scheduler.
2

In the above scheduler, the functions c and s ignore their second arguments.
It is easy to show that, in any weakly fair scheduler, the functions c and s do
not ignore their first arguments, if A has at least two elements.

We introduced the second argument for the functions c and s in order to
enable strong scheduling. As the next result shows, this is indeed necessary.

Lemma 3 Assume A has at least two elements. Let (M, c, s) be a strongly fair
scheduler. Then both functions c and s do not ignore their second arguments.

Proof. Choose m ∈ M , and choose alternatives a 6= b in A.
First assume that function c ignores its second argument. Let Mb be the set

of memory states m′ with c(m′, A) = b (the choice of argument A is arbitrary,
since c ignores its second argument). By mutual recursion, we define a sequence
of memory states ms and a sequence of enabling sets ps by

ms(0) = m ,
ps(n) = if ms(n) ∈ Mb then {a} else {a, b} end ,
ms(n + 1) = s(ms(n),ps(n)) .

Since the scheduler is strongly fair and alternative a is always enabled by ps,
alternative a is taken infinitely often.

On the other hand, by induction, we have ms(n) = ss(m,ps)(n) for all n.
Since function c ignores its second argument, it follows that, for every index n,
we have cs(m,ps)(n) = c(ms(n),ps(n)) = c(ms(n), A). By the definitions of Mb

and ps, this implies that, for all n,

whh 331b – 11

(*) cs(m,ps)(n) = b ≡ ms(n) ∈ Mb ≡ b /∈ ps(n) .

So, in this case, alternative b is never chosen when enabled. Since the scheduler
is strongly fair, this implies that for some n we have

∀ k : n ≤ k ⇒ b /∈ ps(k) .

Using (*), we get that cs(m,ps)(k) = b for all k ≥ n. This contradicts the fact
that alternative a is taken infinitely often.

Secondly, assume that function s ignores its second argument. Consider
the sequence of enabling sets qs ∈ P (A)ω given by qs(n) = {a, b}. Consider
the sequence of memory states mt given by mt = ss(m, qs). Since function
s ignores its second argument, we have, for every sequence rs ∈ P (A)ω, that
ss(m, rs) = mt and hence cs(m, rs)(n) = c(mt(n), rs(n)).

Alternative a is infinitely often enabled by qs. Since (M, c, s) is strongly
fair, it follows that the set U = {n ∈ N | c(mt(n), {a, b}) = a} is infinite. Now
consider the sequence of enabling sets rs given by

rs(n) = if n ∈ U then {a, b} else {a} end .

Since U is infinite, alternative b is infinitely often enabled by rs. Since (M, c, s)
is strongly fair, there are infinitely many indices n with cs(m, rs)(n) = b ∈ rs(n).
These indices clearly satisfy n ∈ U and hence cs(m, rs)(n) = c(mt(n), rs(n)) =
c(mt(n), {a, b}) = a. This is a contradiction. 2

Like other liveness conditions, strong fairness of a scheduler can be verified
by means of a variant function. Let (M, c, s) be a scheduler. Let (W,≤) be a
well-founded partially ordered set. Recall that this implies that every descending
sequence in W is eventually constant.

Consider for a function vf : M × A → W and elements m ∈ M , p ∈ P (A),
a ∈ A the conditions

(D0) vf (s(m, p), a) ≤ vf (m,a) ∨ c(m, p) = a ∈ p ,
(D1) c(m, p) 6= a ∈ p ⇒ vf (s(m, p), a) 6= vf (m,a) .

Condition (D0) means that, at alternative a, function vf descends unless a
is taken. Together with (D0), condition (D1) implies that vf decreases at a
whenever a is enabled and not taken.

Lemma 4 Let the scheduler (M, c, s) have a function vf that satisfies conditions
(D0) and (D1) for all m, p, a. Then it is strongly fair.

Proof. Let m ∈ M be a given initial memory state, and let ps be a sequence
of enabling sets. Let ms be the sequence of successive memory states given
by ms = ss(m,ps). Assume that b is an alternative that is infinitely often
enabled by ps, but is not taken after time t0. By condition (D0), the sequence
rs = λn : vf (ms(n), b) in W is descending after t0. Since (W,≤) is well-founded,
there is t1 ≥ t0 such that rs is constant beyond t1. Since b is enabled infinitely
often, there is t2 ≥ t1 with b ∈ ps(t2). Since b is not taken in t2, condition (D1)
implies that vf (ms(t2 + 1), b) 6= vf (ms(t2), b), that is rs(t2 + 1) 6= rs(t2). This
is a contradiction. 2

whh 331b – 12

4.2 Constructing a Strongly Fair Scheduler

It seems that the first construction of a strict and strongly fair scheduler for a
finite set A is due to Dijkstra [Dij71]. In [Hes88], we generalized this construction
to the case A = N. Unfortunately, that construction is rather nasty. In order
to appreciate the problem for infinite A, let us first sketch a different solution
for finite A.

If A is a finite set or, more generally, if the set of enabled alternatives is al-
ways finite, one can construct a strict and strongly fair scheduler in the following
way. The memory M consists of a FIFO queue of alternatives, which is initially
empty. If there is an enabled alternative in the queue, function c chooses the
first enabled alternative in the queue, and function s removes this alternative
from the queue and adds all enabled alternatives that are not yet in the queue
at the end of the queue. If there are enabled alternatives but no element of
the queue is enabled, c chooses some enabled alternative and s adds all other
enabled alternatives at the end of the queue. If there are no enabled alterna-
tives, c chooses an arbitrary alternative and s leaves the queue unchanged. Note
that the queue remains finite since the sets of enabled alternatives are finite.
It follows that, whenever an alternative is enabled and not taken, it enters the
queue or moves towards the front of the queue. This implies strong fairness.

When the sets of enabled alternatives can be infinite, the queue becomes
infinite and the above construction fails since there is no end to place enabled
alternatives. The following construction is simpler than the one of [Hes88]. It
is based on a suggestion by J.E. Jonker. The idea is to put all alternatives in a
queue, to always choose the first enabled alternative from the queue, and to move
an alternative that is taken, backward in the queue to a position determined by
the time.

Theorem 5 Assume A = N. Then there exists a strict and strongly fair sched-
uler.

Proof. Although A = N, we still use A to indicate the set of numbers that serve
as alternatives. We construct a scheduler (M, c, s) by taking M = H×N, where
H is the set of functions h : A → N with limn→∞ h(n) = ∞. This implies that,
for every k ∈ N, the set {a | h(a) ≤ k} is finite. For a pair (h, t) ∈ M , function
h gives the load of the alternatives and component t gives the time. The choice
function always chooses an alternative a with the lowest load h(a), the successor
function updates function h and increments the time. More precisely, we use
function h to define the relation vh on A given by

a vh b ≡ h(a) ≤ h(b) ∧ (h(a) < h(b) ∨ a ≤ b) .

This is the lexical ordering on the pairs (h(a), a). Therefore, relation vh is a
linear order on A. Clearly, for every b ∈ A, its set of predecessors Pred(h, b) =
{a ∈ A | a vh b} satisfies Pred(h, b) ⊆ {a | h(a) ≤ h(b)} and is therefore finite
because of h ∈ H. It follows that every nonempty subset p of A has an element
Min(h, p) ∈ p with Min(h, p) vh a for all a ∈ p. The choice function c is now
defined by c((h, t), p) = C(h, p) where

whh 331b – 13

C(h, p) = if p = ∅ then 0 else Min(h, p) end .

The successor function s of the scheduler is defined by

s((h, t), p) = (h′, t + 1) where
h′(a) = if c((h, t), p) = a ∈ p ∧ h(a) ≤ t then t + 1

else h(a) end .

So, s increments the time and modifies h only at a when a is taken and the load
is not higher than the time. Then the new value of the load is the new time.
Note that since h grows to infinity, function h′ also grows to infinity, so that,
indeed s is a function M × P (A) → M .

Since M is nonempty, the triple (M, c, s) is a scheduler. It follows from the
definition of function c that the scheduler (M, c, s) is strict.

We use Lemma 4 to prove strong fairness. To show that alternative a, when
enabled often enough, is eventually taken, we first show that, if a is not taken,
t grows until h(a) ≤ t, and when this holds, the number of predecessors of a
decreases until a itself is taken. This is formalized by constructing a variant
function that satisfies (D0) and (D1). To measure the growth of t towards the
load, we define vf0((h, t), a) = max(0, h(a)−t) and verify, for all m = (h, t) ∈ M ,

(0) vf0(s(m, p), a) ≤ vf0(m,a) ,
(1) t < h(a) ⇒ vf0(s(m, p), a) < vf0(m,a) .

In order to formalize the second part of the argument, we write s1(h, t, p) for
the first component of s((h, t), p). Inspired by condition (D0), we observe that

(2) Pred(s1(h, t, p), a) ⊆ Pred(h, a) ∨ C(h, p) = a ∈ p .

In view of (D1), we verify that

(3) h(a) ≤ t ∧ C(h, p) 6= a ∈ p ⇒
C(h, p) ∈ Pred(h, a) \ Pred(s1(h, t, p), a) .

We define vf1(h, a) as the number of elements of the finite set Pred(h, a). The
observations (2) and (3) imply

(4) vf1(s1(h, t, p), a) ≤ vf1(h, a) ∨ C(h, p) = a ∈ p ,
(5) h(a) ≤ t ∧ C(h, p) 6= a ∈ p ⇒ vf1(s1(h, t, p), a) < vf1(h, a) .

Let vf : M ×A → N be defined by

vf ((h, t), a) = vf0((h, t), a) + vf1(h, a) .

The formulas (0) and (4) imply that vf satisfies condition (D0). Since C(h, p) 6=
a ∈ p implies that we do not have C(h, p) = a ∈ p, the formulas (0), (1), (4),
and (5) yield (D1). Since N is well-founded, this concludes the proof. 2

Remark. In section 5 of [Hes88], we did not yet have the concept of scheduler,
but we essentially constructed a strongly fair scheduler (M, c, s) with M ⊆ (A →
N) for which one can use a variant function vf with vf (m,a) = m(a). In that
construction, however, the set M and the function s are quite complicated.

Above, we can restrict H to the set of the functions h : N → N for which the
set {a | h(a) 6= a} is finite. This is a countable set. Then M = H × N is also
countable.

whh 331b – 14

5 Splittings

Inspired by section 3.3, we propose a formalism to introduce alternatives in
specifications and to impose weak or strong fairness conditions for these alter-
natives.

A splitting of a specification K consists of a family of subrelations of the
next-state relation step(K). These subrelations, to be called the alternatives,
are divided in three classes: the weak alternatives, the strong alternatives, and
one unfair alternative. It is assumed that the supplementary property of the
specification is equivalent to the condition that the weak alternatives are treated
under weak fairness and the strong alternatives under strong fairness.

For example, the specification may represent a system of n processes that
each read their message boxes with weak fairness, write results when they have
them with strong fairness, listen to interrupts with strong fairness, and also do
some other things without fairness constraints. In that case, there are n weak
alternatives and 2n strong alternatives. When the specification allows process
creation, however, one must reckon with unboundedly many alternatives, so
that the (static) specification must allow infinitely many of them.

When we need to compare the specification K with another specification L,
we use a relation between the state spaces of K and L. This relation will be a
splitting simulation if both K and L have splittings such that the weak/strong
alternatives of K correspond to the weak/strong alternatives of L, that every
step according to some alternative in K can be transferred to the corresponding
alternative in L, and that for every pair of related states the disabled alternatives
for K are also disabled for L.

5.1 The Splitting Format

We now choose a format to present the weak alternatives and the strong alter-
natives on an equal footing. We want to allow as many of them as possible. It is
harmless to introduce additional empty alternatives since all sequences of states
belong to WF(∅) and SF(∅). We therefore allow infinitely many alternatives.
We put the unfair alternative at index 0 and use an arbitrary set wf of positive
natural numbers to specify the weak alternatives. These considerations lead to
the following two definitions.

If wf is a set of positive natural numbers, a wf -splitting of specification K
is defined as a family of relations (i ∈ N : A.i) such that

(S0) step(K) = 1 ∪ (
⋃

i ∈ N : A.i) ,
(S1) prop(K) = (

⋂
i ∈ N+ : if i ∈ wf then WF(A.i) else SF(A.i)) .

So, every nonstuttering step of K belongs to some alternative A.i. The al-
ternatives in wf are treated with weak fairness, the other positive alternatives
are treated with strong fairness. There is no fairness condition for the unfair
alternative A.0.

If K is a specification with a wf -splitting, a strongly fair scheduler (M, c, s)
can be used to implement the fairness requirements of K, i.e., one can use

whh 331b – 15

the scheduler to construct a specification L with a very weak supplementary
property, together with a refinement mapping L −. K. One uses states(K)×M
as the state space of L. In the next-state relation of L, the scheduler chooses
each time an appropriate alternative from the splitting. Since this construction
is not needed for the theory of splitting forward simulations, we leave the details
to the interested reader.

5.2 Strict Splitting Simulations

Let K and L be specifications. A strict splitting simulation from K to L is
a relation F between the state spaces of K and L such that condition (F0)
of section 3.2 holds and that there exist a subset wf ⊆ N+ and wf -splittings
(i ∈ N : A.i) and (i ∈ N : B.i) of K and L, respectively, that satisfy
(F1s) If (x, y) ∈ F and (x, z) ∈ A.i, there is w with (z, w) ∈ F and (y, w) ∈ B.i .
(F2s) If (x, y) ∈ F and i > 0 and x ∈ disabled(A.i), then y ∈ disabled(B.i).

Note that condition (F1) of section 3.2 is represented by the conjunction of
the formulas (F1s) for all i. Also, note that condition (F2s) for i = 0 is vacuous.
Soundness of strict splitting simulations is expressed by

Theorem 6 Every strict splitting simulation is a strict simulation.

Before proving this theorem, we need to discuss and mollify some of the
complicating factors. Firstly, the proof is easy when one imposes the addi-
tional assumption that the alternatives A.i with i > 0 are pairwise disjoint. In
view of section 3.3, however, we do not want to make this assumption. When
the alternatives can overlap, we need a scheduler to choose fairly between the
alternatives. This is the reason for the intermezzo in Section 4.

A second complication is the appearance of 1 in condition (S0) of splitting.
It is put there since it is useful in almost all applications of the theorem. On the
other hand, it complicates the proof considerably. We therefore define a family
(i ∈ N : A.i) to be a full wf -splitting if condition (S0) is replaced by

(S0’) step(K) = (
⋃

i ∈ N : A.i) .

Every full splitting is a splitting because of reflexivity of step(K). Conversely,
if (i ∈ N : A.i) is a splitting of specification K, the family (i ∈ N : A′.i) defined
by A′.0 = 1∪A.0 and A′.i = A.i for i > 0, is easily seen to be a full splitting of
K.

Proof of the Theorem. Let F be a strict splitting simulation from specification
K to specification L. So, there exist a subset wf ⊆ N+ and wf -splittings
(i ∈ N : A.i) and (i ∈ N : B.i) of K and L, respectively, such that the conditions
(F0), (F1s) and (F2s) hold. We can replace the splittings by full splittings.
This only threatens condition (F1s) for i = 0 because of A′.0 = 1 ∪ A.0. The
condition remains valid since, if z = x, one can choose w = y in (F1s). This
shows that we may assume that both splittings are full.

whh 331b – 16

In order to prove that F is a strict simulation K −. L, we need to transfer
an arbitrary behaviour xs from K to L. So, let xs ∈ Beh(K). We need to
construct ys ∈ Beh(L) with (xs, ys) ∈ Fω.

We now apply Theorem 5 with A = N, the index set of the wf -splitting to
obtain some strict and strongly fair scheduler (M, c, s). Since we need to choose
alternatives i with (xs(n), xs(n + 1)) ∈ A.i, we define the sequence of enabling
sets ps ∈ P (N)ω by

ps(n) = {i | (xs(n), xs(n + 1)) ∈ A.i} .

Note that, since xs is a behaviour and step(K) = (
⋃

i ∈ N : A.i), we have
that ps(n) is always nonempty. Since the scheduler is strict, it follows that
cs(m,ps)(n) ∈ ps(n) for all n.

Since (M, c, s) is a scheduler, M is nonempty and we can choose an initial
state m0 ∈ M . Because of condition (F0), we can choose y0 ∈ start(L) with
(xs(0), y0) ∈ F . We now construct a sequence ys in states(L) inductively. First,
take ys(0) = y0.

If y = ys(n) has been chosen with (xs(n), y) ∈ F , put i = cs(m0,ps)(n).
Then we have i ∈ ps(n) and hence (xs(n), xs(n+1)) ∈ A.i. We can therefore use
condition (F1s) to choose an element y′ with (xs(n+1), y′) ∈ F and (y, y′) ∈ B.i.
Then define ys(n + 1) = y′. This constructs an infinite sequence ys in states(L)
with (xs, ys) ∈ Fω.

We have ys(0) ∈ start(L). For every n, we have (ys(n), ys(n + 1)) ∈ B.i for
some i. Since step(L) = (

⋃
i : B.i), this implies that ys is an initial execution

of L. It remains to prove that ys satisfies the supplementary property of L.
Let i > 0 be given. We need to prove ys ∈ WF(B.i) if i ∈ wf and ys ∈

SF(B.i) if i /∈ wf . Since xs is a behaviour of K, we have xs ∈ WF(A.i) if i ∈ wf
and xs ∈ SF(A.i) if i /∈ wf . Since (xs, ys) ∈ Fω, condition (F2s) implies

xs ∈ 23 [[disabled(A.i)]] ⇒ ys ∈ 23 [[disabled(B.i)]] ,
xs ∈ 32 [[disabled(A.i)]] ⇒ ys ∈ 32 [[disabled(B.i)]] .

In view of the definitions of WF and SF, it therefore remains to prove

xs ∈ 23 [[A.i]]2 ⇒ ys ∈ 23 [[B.i]]2 .

This is done by contraposition. Assume ys /∈ 23 [[B.i]]2. Then there is n0 with
(ys(r), ys(r + 1)) /∈ B.i for all r ≥ n0. By the construction of ys, this implies
i 6= cs(m0,ps)(r) for all r ≥ n0. Since (M, c, s) is a strongly fair scheduler, this
implies the existence of n1 ≥ n0 with i /∈ ps(r) for all r ≥ n1. This means
(xs(r), xs(r + 1)) /∈ A.i for all r ≥ n1. It follows that xs /∈ 23 [[A.i]]2. This
concludes the proof. 2

Now that we have soundness, we can discuss methodology and compare
forward simulations with strict splitting simulations. Firstly, strict splitting
simulations can only be used when a splitting is available, but that is often the
case. When a natural splitting is available, verification of condition (F1s) is
usually almost the same as verification of (F1).

whh 331b – 17

Verification of (F2s), however, is usually much easier than verification of
(F2). Indeed, (F2s) is a condition on the disabledness of the alternative step
relations, whereas (F2) requires an analysis of behaviours. For example, it is
easy to see that relation cvf of section 3.3 is a strict splitting simulation.

6 Nonstrict Simulations

As Lamport [Lam89] has argued, it is important to allow refinement relations
where the concrete behaviour occasionally takes fewer steps than the abstract
behaviour. We do this by defining (nonstrict) simulations, which indeed admit
additional stutterings in the concrete specification.

At this point, we have to give a more formal definition of the stuttering
relation � introduced in section 2.2. We define a function g : N → N to be a
stutter function iff it is surjective and monotonic. Equivalently, function g is a
stutter function iff g(0) = 0 and g is unbounded, and g(i + 1) − g(i) ∈ {0, 1}
for all i ∈ N. We now define xs � xt to mean that there is a stutter function g
with xs ◦ g = xt. The reader who is in doubt about the direction may note that
every stuttering of g induces a stuttering of xs ◦ g, even if xs is stutter-free.

It is easy to see that the definition implies that � is reflexive and transitive.
One can also prove that � is antisymmetric.

A relation F between the state spaces of specifications K and L is defined
to be a simulation [Hes05b] from K to L, notation F : K −.. L, if for every
xs ∈ Beh(K) there exists a pair (xt, ys) ∈ Fω with xs � xt and ys ∈ Beh(L).
Sequence xt is a behaviour of K obtained from xs by adding stutterings, in such
a way that it matches ys via relation F .

It is easy to see that every strict simulation is a simulation since one can
choose xt = xs. Conversely, not all simulations are strict. In [Hes05b] it is
proved that a visible specification (K, v) implements (L, w) if and only if there
is a nondisturbing simulation K −.. L. In the next section, we describe a class
of nonstrict simulations. The stuttering variables of [LLOR99] form another
example of a nonstrict simulation.

6.1 Splitting Simulations

We now define splitting simulations as a mild weakening of the strict splitting
simulations of section 5. We only weaken condition (F2s) by adding a stuttering
possibility.

A splitting simulation from K to L is defined to be a relation F between the
state spaces of K and L such that condition (F0) of section 3.2 holds and there
is a subset wf ⊆ N+ such that K and L have wf -splittings (i ∈ N : A.i) and
(i ∈ N : B.i), respectively, such that condition (F1s) holds and:
(F2ns) If (x, y) ∈ F and i > 0 and x ∈ disabled(A.i), then y ∈ disabled(B.i)
or there exists w with (y, w) ∈ B.i and (x,w) ∈ F .

Clearly, condition (F2s) of section 5 implies condition (F2ns). There are two
principal possibilities to satisfy condition (F2ns). Let alternative i be called

whh 331b – 18

conservative iff, for every pair (x, y) ∈ F , we have that x ∈ disabled(A.i) implies
y ∈ disabled(B.i) as in (F2s). Let alternative i be called stuttering iff, for every
pair (x, y) ∈ F and every w with (y, w) ∈ B.i, we have that (x,w) ∈ F . It is
easy to see that (F2ns) holds if every alternative i is conservative or stuttering.
Note that (F2ns) can hold while A.i is empty (i.e. absent) and B.i is nonempty.

Soundness of splitting simulations is expressed by

Theorem 7 Every splitting simulation is a simulation.

Proof. Let F be a splitting simulation from K to L. By an argument completely
analogous to the one used in the beginning of the proof of Theorem 6, we may
assume that K and L have full wf -splittings (i ∈ N : A.i) and (i ∈ N : B.i)
satisfying (F1s) and (F2ns).

Let xs be a behaviour of K. We have to construct a behaviour ys of L and a
stutter function g with (xs ◦ g, ys) ∈ Fω. We first use condition (F0) to choose
a state y0 ∈ start(L) with (xs(0), y0) ∈ F . We use Theorem 5 to choose a strict
and strongly fair scheduler (M, c, s) and a start state m0 ∈ M .

For y ∈ states(L) and k ∈ N, we define the set pp(y, k) of alternatives by

i ∈ pp(y, k) ≡
(xs(k), xs(k + 1)) ∈ A.i ∨ (∃ w : (y, w) ∈ B.i ∧ (xs(k), w) ∈ F) .

We use simultaneous recursion to construct three infinite sequences ys ∈ states(L)ω,
ks ∈ Nω, and ms ∈ Mω. The start is ys(0) = y0 and ks(0) = 0 and ms(0) = m0.
Note that (xs(0), y0) ∈ F . Assume that y = ys(n), k = ks(n), and m = ms(n)
have been constructed and satisfy (xs(k), y) ∈ F .

Since xs is a behaviour of K and (i ∈ N : A.i) is a full splitting of K, there is
an alternative j with (xs(k), xs(k + 1)) ∈ A.j. Therefore, pp(y, k) is nonempty.
Since the scheduler is strict, it follows that the alternative i = c(pp(y, k),m)
satisfies i ∈ pp(y, k). We use this alternative i to define ks(n + 1) = k′, ms(n +
1) = m′, and to choose ys(n + 1) = y′ by the clauses:

k′ = if (xs(k), xs(k + 1)) ∈ A.i then k + 1 else k end ,
m′ = s(i, m) ,
y′ ∈ {w | (y, w) ∈ B.i ∧ (xs(k′), w) ∈ F} .

We have to argue the existence of y′ with the properties claimed. If k′ = k + 1,
this follows from condition (F1s). If k′ = k, it follows from i ∈ pp(y, k) and the
definition of k′. The definition of y′ implies that indeed (xs(ks(n + 1)), ys(n +
1)) ∈ F . The resulting sequence ys is an execution of L, since ys(0) is a start
state, and every step (ys(n), ys(n + 1)) belongs to some relation B.i ⊆ step(L).

The sequence ks starts at 0 and takes steps of 0 or 1. Therefore, in order to
show that ks is a stutter function, we only need to show that it tends to infinity.
If it does not tend to infinity, it eventually becomes constant, say ks(n) = k0

for all n ≥ n0. Since step(K) = (
⋃

i : A.i) and xs is a behaviour, there is an
alternative i0 with (xs(k0), xs(k0 + 1)) ∈ A.i0. Let the sequence of sets ps be
given by ps(n) = pp(ys(n), ks(n)). Then we have i0 ∈ ps(n) for all n ≥ n0.
Since the scheduler is strongly fair, it follows that there is an index n ≥ n0 with

whh 331b – 19

cs(ps)(n) = i0. The corresponding step satisfies k′ = k + 1, contradicting the
assumption. This proves that ks is a stutter function with (xs ◦ ks, ys) ∈ Fω.

It remains to prove that ys satisfies the supplementary property of L. In view
of the definition of splittings, it suffices to prove for all i > 0 that xs ∈ WF(A.i)
implies ys ∈ WF(B.i) (for i ∈ wf) and that xs ∈ SF(A.i) implies ys ∈ SF(B.i)
(for i /∈ wf). Let i > 0 be given.

If ys ∈ 23 [[B.i]]2 then ys belongs to both WF(B.i) and SF(B.i). So, we
may assume that ys /∈ 23 [[B.i]]2. This implies the existence of n1 such that
(ys(r), ys(r + 1)) /∈ B.i for all r ≥ n1. By the construction of ys, it follows that
i 6= cs(ps)(r) for all r ≥ n1. Since the scheduler is strongly fair, this implies
that there is n2 ≥ n1 such that i /∈ ps(r) for all r ≥ n2. By the definitions of ps
and pp this implies

(**) ∀ r : n2 ≤ r ⇒ (xs(ks(r), xs(ks(r) + 1)) /∈ A.i
∧ ¬ (∃ w : (ys(r), w) ∈ B.i ∧ (xs(ks(r)), w) ∈ F) .

Since ks is a stutter function, the first conjunct of (**) yields xs /∈ 23 [[A.i]]2.
On the other hand, since (xs(ks(r)), ys(r)) ∈ F , condition (F2ns) together

with the second conjunct of formula (**) implies

∀ r : n2 ≤ r ∧ xs(ks(r)) ∈ disabled(A.i) ⇒ ys(r) ∈ disabled(B.i) .

Using that ks is a stutter function, it follows that

xs ∈ 23 [[disabled(A.i)]] ⇒ ys ∈ 23 [[disabled(B.i)]] ,
xs ∈ 32 [[disabled(A.i)]] ⇒ ys ∈ 32 [[disabled(B.i)]] .

Since xs /∈ 23 [[A.i]]2, it follows that xs ∈ WF(A.i) implies ys ∈ WF(B.i), and
xs ∈ SF(A.i) implies ys ∈ SF(B.i). This concludes the proof. 2

7 In Conclusion

For actual correctness proofs in which liveness is not neglected, (strict) splitting
simulations form a more convenient tool than the classical forward simulations,
since they only require investigation of the next-state relations and do not gen-
erate conditions on the behaviours. Of course, they can only be applied to
prove simulation relations between specifications with related supplementary
properties given in terms of WF and SF.

The theory was primarily developed for the application [Hes04a] of splitting
simulations to the lazy caching algorithm of [ABM93]. We have not yet worked
on other applications of the theory. It came as a surprise to formalize and reuse
old work on a fair scheduler for infinitely many alternatives.

At several points during the development of the theory, the use of the proof
assistant PVS [OSRSC01] helped us to avoid unsound shortcuts and to sharpen
the arguments.

whh 331b – 20

References

[ABM93] Y. Afek, G. Brown, and M. Merrit. Lazy caching. ACM Trans.
Program. Lang. Syst., 15:182–206, 1993.

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings.
Theor. Comput. Sci., 82:253–284, 1991.

[Dij71] E. W. Dijkstra. A class of allocation strategies inducing bounded
delays only. Tech. Rept., Tech. Univ. Eindhoven, EWD 319,
see www.cs.utexas.edu/users/EWD, 1971.

[Hes88] W.H. Hesselink. Deadlock and fairness in morphisms of transition
systems. Theor. Comput. Sci., 59:235–257, 1988.

[Hes02] W.H. Hesselink. Eternity variables to simulate specifications. In
E.A. Boiten and B. Moeller, editors, MPC 2002, volume 2386 of
LNCS, pages 117–130, New York, 2002. Springer.

[Hes04a] W.H. Hesselink. Mechanical verification of the lazy caching algo-
rithm. In preparation, see www.cs.rug.nl/~wim/pub/mans.html,
2004.

[Hes04b] W.H. Hesselink. Using eternity variables to specify and prove a
serializable database interface. Sci. Comput. Program., 51:47–85,
2004.

[Hes05a] W.H. Hesselink. Eternity variables to prove simulation of specifi-
cations. ACM Trans. on Comp. Logic, 6:175–201, 2005.

[Hes05b] W.H. Hesselink. Universal extensions to simulate specifications. In
preparation, see www.cs.rug.nl/~wim/pub/mans.html, 2005.

[HHS86] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined.
In B. Robinet and R. Wilhelm, editors, ESOP 86, volume 213 of
LNCS, pages 187–196, New York, 1986. Springer.

[Jon91] B. Jonnson. Simulations between specifications of distributed sys-
tems. In J.C.M. Baeten and J.F. Groote, editors, CONCUR ’91,
volume 527 of LNCS, pages 346–360, New York, 1991. Springer.

[JPR99] B. Jonsson, A. Pnueli, and C. Rump. Proving refinement using
transduction. Distr. Comput., 12:129–149, 1999.

[Lam89] L. Lamport. A simple approach to specifying concurrent systems.
Commun. ACM, 32:32–45, 1989.

[Lam93] L. Lamport. How to write a proof. American Mathematical
Monthly, 102:600–608, 1993.

whh 331b – 21

[Lam94] L. Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16:872–923, 1994.

[LLOR99] P. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching in
TLA. Distr. Comput., 12:151–174, 1999.

[LV95] N. Lynch and F. Vaandrager. Forward and backward simulations,
part I: untimed systems. Inf. Comput., 121:214–233, 1995.

[Mil71] R. Milner. An algebraic definition of simulation between programs.
In Proc. 2nd Int. Joint Conf. on Artificial Intelligence, pages 481–
489. British Comp. Soc., 1971.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Inf., 6:319–340, 1976.

[OSRSC01] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Version 2.4, System Guide, Prover Guide, PVS Language Ref-
erence, 2001. http://pvs.csl.sri.com

