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Abstract. A simplification of the mutual exclusion algorithm of Lycklama
and Hadzilacos (1991) is presented. It uses only four nonatomic shared bits
per thread to guarantee mutual exclusion with the first-come-first-served
property. The algorithm is verified by assertional methods, aided by the
proof assistant PVS. A variation with five bits per thread is also given. This
variation may give better performance when the number of threads is large.
The use of the proof assistant made it easy to transfer the proof of the main
algorithm to the variation.
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1 Introduction

The advent of multiprocessors and multicore architectures has raised the interest
in the correctness of concurrent algorithms because, as is well known, concurrent
algorithms can unexpectedly misbehave due to subtle bugs or race conditions. They
are almost impossible to test, and difficult to verify.

Testing and model checking are important methods to find errors, but, for con-
current algorithms, they are in most cases not able to ensure correctness. In verifi-
cations on the other hand, the concurrency usually induces many case distinctions,
even when attractive conceptualizations are available. The verification, therefore,
sometimes seems to hinder rather than help understanding of the algorithm.

The verification problem for concurrent algorithms has been with us for more
than forty years. When Dijkstra [13] introduced mutual exclusion in 1965, he pre-
sented Dekker’s algorithm for it with an extensive correctness argument. Yet, in
1974, he published his self-stabilizing systems [15] without any hint for correctness.

In recent years, the advance of mechanical theorem provers like ACL2, Coq,
HOL, Isabelle, PVS has made it easier to prove concurrent algorithms exhaustively,
primarily because one can safely rely on the prover for exhaustive case distinctions.
Effective use of the prover for these purposes, however, requires a good understand-
ing of the methods of concurrency verification.

The present paper illustrates the new possibilities by presenting a computer
assisted verification of a simplification of the algorithm of Lycklama and Hadzilacos
[46]. This simplification establishes mutual exclusion with the first-come-first-served
property by means of only four nonatomic shared bits per thread.

1.1 Overview

We first give an overview of the verification methods for concurrent and distributed
algorithms in Section 1.2. In Section 1.3, we indicate the relationship between these
verification methods and the practices in the design of concurrent algorithms. The
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correctness aspects of concurrent algorithms are briefly discussed in Section 1.4.
Section 1.5 presents the mutual exclusion problem, while Section 1.6 introduces the
solution of Lycklama and Hadzilacos.

Section 2 presents the formal model for concurrent and distributed algorithms,
and then specializes to shared memory concurrency, with possibly nonatomic vari-
ables. It concludes with the definitions of mutual exclusion (MX) and the first-come-
first-served property (FCFS).

Section 3 presents our simplified algorithm with 4 shared bits. It first explains
how Lycklama and Hadzilacos [46] have separated the concerns for mutual exclu-
sion and FCFS. It then presents the new algorithm along these lines, and proves
that it satisfies mutual exclusion and FCFS. Section 4 proves absence of immedi-
ate deadlock, equally important but more difficult. In Section 5, we prove lockout
freedom, i.e., absence of livelock and individual starvation. More precisely, under
the assumption of weak fairness [44], we prove that every thread always eventually
comes back to the noncritical section.

In Section 6, we discuss some variations of the algorithm, in particular a variation
with 5 shared bits that may have a better performance if the number of threads
is large. Here, we also sketch the relationship with the algorithm of Lycklama and
Hadzilacos [46]. In Section 7, we indicate how the correctness proof is verified with
the proof assistant PVS. We conclude in Section 8.

1.2 Assertional and behavioural methods in concurrency

Methods to verify concurrent algorithms were first developed in the 1970s. This
happened in parallel with and under inspiration of the methods for sequential al-
gorithms in [29,16]. The main papers were by Ashcroft [9], Owicki and Gries [52],
and Lamport [39]. The method of the proof outlines of [52] was the most influen-
tial one. Its main idea is that the code of the threads is annotated with assertions
that determine Hoare triples specifying the actions of the threads, while possible
interference by other threads is dealt with separately.

The three papers are exponents of what came to be known as the assertional
method, in which the correctness argument primarily relies on assertions about the
state and the next-state relation.

In 1979, Lamport [40] introduced the behavioural approach. In this approach, one
can argue about the behaviours of a concurrent algorithm by introducing an ordering
on the steps that are executed. In 1990, however, Lamport [43, p. 427] came back to
the assertional method and abandoned his behavioural method because “despite an
appearance of extreme rigour, the method ultimately reduces to the unstructured,
informal reasoning of ordinary mathematics”.

The main point of [43] was the decision to concentrate on a single global invari-
ant: the conjunction of all properties that hold continuously during any program
execution. In the spirit of the days around 1990, the paper introduced predicate
transformers win and sin that yield the weakest invariant implying a given predi-
cate and the strongest invariant implied by it.

A second point of [43] is the insistence that in assertional methods one should
be able and willing to reckon explicitly with the control state. In the proof outlines
method of [52,6], the control state is not directly available, but follows from the
locations of the assertions in the proof outlines and can be made explicit by means
of auxiliary variables.

In 1991, Abadi and Lamport [1] extended the assertional method with prophecy
variables and refinement mappings. A refinement mapping is roughly speaking a
function between the state spaces of two specifications S1 and S2, such that every
step of S1 maps to a step of S2. It follows that every execution of S1 maps to
an execution of S2. This means that S1 “implements” S2. Prophecy variables are
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auxiliary variables added to a specification to “guess” future developments of the
execution. The auxiliary variables to record the past of an execution introduced by
[52] (also called ghost variables) were renamed to history variables. In this paper,
we only need history variables, no prophesies or refinement mappings.

Under some technical conditions, the paper [1] proved soundness and semantic
completeness of the assertional method with history variables, prophecy variables
and refinement mappings. Here semantic completeness means that every “simulation
relation” can be factorized over an extension with history variables, followed by an
extension with prophecy variables and a refinement mapping. In [27], we replaced
the prophecy variables by eternity variables and in this way eliminated the technical
conditions of [1].

1.3 Methods and practice

Methods for concurrency verification can only be judged by their relevance for good
example problems. The examples should not be too small because small examples
can be verified by all sound methods. They should not be too large because that
makes it difficult to get an overview and special issues of the example may become
dominant.

In practice, new concurrent algorithms are often presented in conference papers
and the proofs are omitted due to space constraints, possibly with references to
proofs in a technical report, e.g., [33,57,17,50,51].

Yet, several sizable concurrent algorithms have been proved (almost) exhaus-
tively in the past 25 years. We list here an, obviously biased, selection of them,
grouped according to the verification method applied.

B1. Behavioural methods based on execution histories (without an explicit partial
order as in [40]): an implementation of LL/SC variables [34].

B2. Behavioural methods based on [40]: mutual exclusion with 5 safe bits [46],
bounded concurrent timestamp systems [21].

A1. Assertional methods with proof outlines: we know of no sizable case study.
A2. Assertional methods for message passing algorithms: the GHS minimum weight

spanning tree algorithm [63,25].
A3. Assertional methods for shared memory, based on global invariants with control

information: Ben Ari’s garbage collector [55], wait-free linearization [23], lazy
caching [37], lock-free dynamic hashtables [18], nonatomic mutual exclusion [36],
lock-free concurrent garbage collection [19].

A4. Methods like A3 extended with essential use of refinement: a serializable database
interface [26], a lock-free implementation of atomicity [20], a mutual exclusion
algorithm [7].

Of course, the verification method is closely linked to the specification method, as
it is the specification that needs to be verified. This is especially notable for the
algorithms mentioned under B2 and A4.

While we have tried to compile a fair selection above, we can leave no doubt
about our preferences. With [43], we are convinced that the assertional methods
A2, A3, and A4 are to be preferred because behavioural proofs are seldom reliable.
The verification of any concurrent algorithm should be based on invariants, possibly
augmented with history, prophecy or eternity variables, and refinement methods.
This is not a matter of dogma, but of reliability and ease of comparison. Assertional
methods have been successful for more than twenty years now, and complicated
algorithms have been verified with these methods.

The proof of correctness of a concurrent algorithm always requires many case
distinctions. Handling case distinctions can be done much more reliably by a me-
chanical proof assistant than by a human verifier. We use the proof assistant PVS
[53] for this purpose.
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Another method of concurrency verification is model checking, e.g. [11,30]. Model
checking can decide the correctness of an algorithm if the state space is finite and not
too large for the available machine. We prefer theorem proving over model check-
ing because theorem proving improves the understanding of the algorithm. For a
doubtful algorithm, however, model checking can often quickly reveal incorrectness.

There are several good books on distributed algorithms and concurrent pro-
gramming that do give correctness proofs [5,22,47,61]. These books mostly use be-
havioural arguments based on [40], with occasional application of invariants. In our
view, the proofs suffer from what Lamport called “the unstructured, informal rea-
soning of ordinary mathematics”. In the vast universe of mathematics, the problem
of correctness of concurrent algorithms is a very special case. The single approach
by assertional methods with its three versions A2, A3, A4 gives sufficient flexibility
to treat all of them. There is of course more than correctness. The books mentioned
also give mathematical treatments of other theoretical issues like time complexity
and consensus numbers. There are also good books on concurrency verification, e.g.,
[6,12,48,49], all of these using assertional methods. We are not aware of verification
books that use behavioural methods.

Verification of concurrent algorithms does not really require an in-depth study of
the theory of verification. One can learn much from a good case study. It is therefore
important that assertional verifications of representative concurrent algorithms are
available. The aim of the present paper is to provide this. For this purpose, we have
chosen the mutual exclusion algorithm of Lycklama and Hadzilacos [46], because an
assertional proof was lacking, and because it is relatively simple and yet illustrates
the problems of larger algorithms. This is also a good opportunity to simplify the
algorithm. The verification presented here belongs to the above class A3.

1.4 Safety and liveness

The verification of a concurrent algorithm has two concerns [39]: safety and liveness.
Safety means that nothing bad happens. Liveness means that eventually something
good happens. Safety is typically captured in invariants. The treatment of liveness
is much more open, and dependent on the algorithm.

In this paper, we consider systems that offer some service to a number of threads.
The threads can be idle or competing. Competing means interested in the service.
The competing threads usually need to communicate for this. Idle means not inter-
ested in the service, but possibly involved in other activities.

In this context, the two main liveness properties are deadlock freedom and lockout
freedom [46,22]. Deadlock freedom means that, when there are competing threads,
eventually some thread gets the service. Lockout freedom means that every compet-
ing thread eventually gets the service. Of course, lockout freedom implies deadlock
freedom.

In order to prove that our algorithm satisfies (deadlock freedom and) lockout
freedom, we have to assume weak fairness for most of the steps of the algorithm.
Roughly speaking, weak fairness for some step is the assumption that, if some
thread from some moment onward is always able to do the step, it will eventually
take it. On uniprocessor systems, a reasonable scheduler will take care of this. On
multiprocessor systems, it means that all processors are fast enough to read and
modify shared variables. The assumption of weak fairness is formalized by excluding
the “unfair” executions from consideration. The precise treatment is postponed to
Section 5.2.

1.5 Mutual exclusion

The problem that concurrent processes may need exclusive access to some shared
resource was first proposed and solved in [13]. The problem came to be known as
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mutual exclusion in [14]. Numerous solutions to this problem have been proposed.
Surveys can be found in [4,54,60].

An early and elegant solution is Lamport’s bakery algorithm [38], which has two
additional properties that need to be discussed. It has the first-come-first-served
property (FCFS), and the shared variables used need not be atomic. The second
point means that the algorithm does not assume mutual exclusion on read and
write operations on shared variables. The downside is that these shared variables
hold integer values that can become arbitrarily large. Several modifications to the
bakery algorithm have been proposed to bound these numbers [64,2,32,35,58,62,59].
All these modifications compromise the nonatomicity property of the algorithm.

Although devising busy-waiting solutions to the mutual exclusion problem was
early on mostly an academic exercise because busy waiting is inefficient on a single
processor, the advent of multiprocessors and multicore architectures has spurred
renewed interest in such solutions [5, p. 135].

Similarly, algorithms for nonatomic shared variables are becoming practically
relevant, because several recent systems such as smart-phones, multi-mode hand-
sets, multiprocessor systems, network processors, graphics chips, and other high
performance electronic devices use multiport memories, and such memories allow
nonatomic accesses through multiple ports [31,56,65].

Mutual exclusion without FCFS does not require much shared memory. Indeed,
the algorithm of Burns-Lamport [10,41] establishes mutual exclusion for N threads
with only one nonatomic shared Boolean variable per thread.

Lamport’s bakery algorithm gives mutual exclusion with FCFS, using only N
nonatomic shared integer variables, but these variables cannot be bounded. The
algorithm of [59] uses N atomic variables with values in [0 . . . N ], and N + 1 atomic
shared bits. The algorithm of [8] uses N nonatomic variables with values in [0 . . . N ],
and 3N + 2 nonatomic shared bits.

In terms of shared-space complexity, however, the best mutual exclusion algo-
rithm with the FCFS property, that is known to us, is the one of Lycklama and
Hadzilacos [46].

1.6 Mutual exclusion by Lycklama-Hadzilacos

The mutual exclusion algorithm of Lycklama and Hadzilacos [46] establishes mutual
exclusion with the FCFS property for an arbitrary number of threads. Per thread,
it uses five shared Boolean variables, which need not be atomic. The paper [46]
contains a behavioural correctness proof that we are unable to follow.

The presentation of the algorithm in [46] splits it in two parts: an inner algo-
rithm to establish mutual exclusion and an outer algorithm to guarantee the FCFS
property. The inner algorithm is the mutual exclusion algorithm of Burns [10] and
Lamport [41], which uses one shared bit per thread. The outer algorithm uses four
shared bits per thread. The combined algorithm thus uses five bits per thread. In
comparison with [46], we simplify the outer algorithm, such that it has simpler
waiting conditions and simpler invariants, and that it may have a somewhat better
performance.

The conclusion of [46] asserts that the number of communication bits required
can be reduced from five to four per thread. A proof of correctness of this modifica-
tion is not given. The reduction is achieved by reusing the bit of the inner algorithm
in the outer algorithm. At first sight, this appears to be an ugly trick.

We claim, however, that, if this inner bit is used in the outer algorithm, the inner
algorithm makes one of the waiting conditions in the outer algorithm superfluous.
This enables us to simplify the combined algorithm. The present paper substantiates
this claim. It is a representative assertional verification of a concurrent algorithm
with modest complexity, supported by the mechanical proof assistant PVS.
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1.7 Our contributions

We simplify the algorithm of [46] by using fewer shared bits and straightening
the associated await conditions. We present an assertional proof of its correctness,
both safety and liveness, verified with the proof assistant PVS. Our contributions,
however, are not so much in the results, but in the methods by which these results
have been obtained.

2 The Model and the Repertoire

The basic model is described in Section 2.1. In Section 2.2, we extend the model
with threads and their programs. Atomicity is discussed in Section 2.3. Nonatomic
shared variables are introduced in Section 2.4. Mutual exclusion is introduced in
Section 2.5.

2.1 The basic model

Our basic model for concurrent and distributed algorithms is a transition system
which consists of a set, say X, called the state space, a relation step ⊆ X2, called
the step relation, and a subset init ⊆ X, the set of initial states. Following [1],
we assume that the step relation is reflexive: it contains the identity relation 1X .
An execution is an infinite sequence of states (xn | n ∈ N) with x0 ∈ init, and
(xn, xn+1) ∈ step for all n ∈ N.

Usually (e.g., [1,27]), there is also a so-called supplementary property P ⊆ Xω to
capture fairness or liveness properties. If so, an execution that belongs to P is called
a behaviour. In this paper, we use the supplementary property of weak fairness, but
we postpone the treatment of this to Section 5.2.

A state x ∈ X is called reachable if it occurs in an execution. A function on the
set X is called a state function. A Boolean state function is called a predicate. A
predicate is called an invariant if it holds in all reachable states. A predicate f is
called inductive if it holds in all initial states and is preserved under every step, i.e.,

(∀ x ∈ init : f(x)) ∧ (∀ x, y : f(x) ∧ (x, y) ∈ step ⇒ f(y)) .

It is easy to see that every inductive predicate is an invariant. Conversely, in order to
show that some predicate is an invariant, it suffices to show that it is implied by an
inductive one. In this way, one can largely avoid the executions from consideration,
and concentrate on the states and the step relation. This is the central aim of the
assertional method.

2.2 Threads and programs

In concurrent algorithms, there is usually a set of threads that can do steps. Each
thread p has its own step relation stepp to determine the steps it can make. The
actual step relation step is a union step = 1X ∪

⋃
p stepp where p ranges over the

threads. The state space X is a Cartesian product of a shared state space and
the private state spaces of the threads. The private state spaces of the threads are
spanned by private variables. For simplicity, we assume that all threads have the
same private variables. If v is a private variable, we write v.p to indicate the value
of v for thread p.

For algorithms with shared memory, we assume that the shared state space is
spanned by the shared variables. We use the convention that shared variables are
in typewriter font, while private variables are slanted.
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Remark. The shared state space need not be spanned by shared variables. For
example, for algorithms with message passing, the shared state space is the multiset
of all messages that are in transit, i.e., that have been sent and have not yet been
received (e.g., see [24]). In this paper, however, we stick to shared memory.

2.3 Atomicity

In concurrency, the atomic commands of the threads are interleaved in an arbitrary
way. It is therefore important to specify the grain of atomicity of the commands.
According to the principle of single critical reference, e.g., [52, (3.1)], [6, p. 273], an
atomic command reads or writes at most one shared variable (not both), unless it is
specifically provided as a call to the operating system (e.g., a semaphore operation).
Actions on private variables can be added to atomic commands because they never
lead to interference.

This principle sets the default. In the design of algorithms and in the specification
of operating system calls, however, one often needs to deviate from the principle.
The present paper, however, can follow the principle completely. In general, we
choose the atomicity of the commands as coarse as allowed by the principle. The
reason for this is that an algorithm requires more, and more complicated invariants
when its grain of atomicity is refined.

Every transition of the transition system corresponds to an atomic command
that has a unique label. The control state of thread p is given by the program counter
pc.p, which takes values in the set of labels and determines which command is to
be executed next. If pc.p = `, we say that thread p is at label ` (notation p at `). If
L is a set of labels, we write p in L for pc.p ∈ L. We thus use the labels to indicate
the grain of atomicity that is used in our transition system. In other words, in the
transition system, control is never at an unlabelled semicolon.

We use a pseudocode with a standard syntax for simple commands, with :=
for the assignment, if then (else) endif for the conditional command, while do
endwhile for the conditional repetition, and for all do end for the bounded rep-
etition. In the pseudocode, every command implicitly modifies pc to jump to the
next label unless specified otherwise.

Every repetition consists of a test for termination and a body that ends with
a backward jump to the test. Consequently, control is repeatedly at the test. If
the body including the test is a single atomic command, control does not leave
the test until termination of the repetition. In this way, a labelled command can
be a complete repetition, but then only the steps of the repetition are atomic. For
example, the labelled command

` : while B do S endwhile ; T

is modelled as

` : if B then S ; goto ` else T endif .

In other words, in this single atomic command, B is inspected and either S or T
is executed once. In the first case control stays at `. Otherwise control goes to the
next label.

A thread can be explicitly disabled by a command of the form

` : await B then S .

This command can only be executed when the guard B holds, in which case it
means execution of S followed by a jump to the next label.
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2.4 Nonatomic shared variables

The algorithm of [46] truly solves mutual exclusion, in the sense that it does not
rely on atomic access of the shared variables (which can be seen as mutual exclusion
at a lower level). We thus have to accommodate nonatomic shared variables in our
model of executions with atomic steps.

In this paper, every shared variable is an output variable, i.e., there is at most
one thread that can write it. Lamport [42] distinguishes two kinds of nonatomic
output variables: safe ones and regular ones.

An output variable is called safe if a read not concurrent with a write obtains
the correct value, while a read concurrent with a write may obtain an arbitrary
value of the correct type. Concurrent writes do not occur, because any variable is
written by at most one thread. A variable is called regular if it is safe and a read
concurrent with a write can only obtain the old value or the value that is being
written. In this paper, all shared variables are only assumed to be safe.

We use the formal model for safe variables of [3]. A read action of a shared
variable x into a private variable v is written v := x. It can be regarded as atomic
because it does not influence the shared state. For a safe shared variable, we need
to indicate that reading during a write action can return any value. We therefore
denote a write action of a private expression E into a safe shared variable x by

(0) ` : x := (flickering) E .

We model this by a nondeterministic choice

(1) ` : (x := arbitrary ; goto ` [] x := E) .

In other words, command (0) is modelled in (1) as a repetition of arbitrary assign-
ments to x that ends with the actual assignment of E to x. The value of x during the
repetition is indeterminate. We assume the liveness condition that the repetition
terminates.

The paper [43] allows arbitrary nonatomic operations as primitive building
blocks. This complicates the semantics of nonatomic operations considerably. In the
special case of writing into a safe shared variable, however, the definitions agree.

2.5 Mutual Exclusion

Traditionally, mutual exclusion is modeled as follows. There are N threads, num-
bered from 0 upward, that communicate via shared variables and that repeatedly
may compete for unique access to a shared resource. The threads are thus of the
form:

thread (p : 0 ≤ p < N) =
while true do

NCS ; Doorway ; Waiting ; CS ; Exit
endwhile .

NCS and CS are given program fragments. NCS is the noncritical section, which
need not terminate. Access to the shared resource is modelled as the critical section
CS, which is guaranteed to terminate. The aim is to implement Doorway , Waiting ,
and Exit in such a way that the number of threads in CS is guaranteed to remain
≤ 1 (mutual exclusion).

The first-come-first-served property (FCFS) is defined in [38] to mean that when
thread p enters Doorway while thread q is in Waiting , thread p will not enter CS
before q does. It is a safety property (it would be bad when p enters before q).

The progress requirements are firstly that Doorway and Exit can be traversed
without waiting, and secondly that, when there is a thread in Waiting and no thread
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in CS, eventually a thread will enter CS. This is deadlock freedom in the sense of 1.4.
Together with FCFS, it implies lockout freedom: every thread in Waiting eventually
enters CS.

3 The New Algorithm

In the mutual exclusion algorithm of [46], mutual exclusion (MX) and FCFS are
accomplished by two separate algorithms that are nested as shown in Figure 1.
The line (†) holds the inner algorithm for mutual exclusion, which is sketched in
Section 3.1 below. The outer algorithm to guarantee FCFS consists of Doorway ,
WaitingFcfs, and ExitFcfs. Its design is sketched in Section 3.2. The new algo-
rithm is presented in Figure 2 in Section 3.3. In Section 3.4, we specify its grain of
atomicity.

The verification of the inner algorithm is done in Section 3.5. In Section 3.6,
we specify the FCFS property by means of a history variable that, for an entering
thread p, holds the set of threads that thread p must give priority to, and then prove
by means of invariants that the algorithm of Figure 2 satisfies this specification.

thread (p : 0 ≤ p < N) =
while true do

NCS ; Doorway ; WaitingFcfs ;
(†) WaitingMx ; CS ; ExitMx ;

ExitFcfs
endwhile .

Fig. 1. Splitting mutual exclusion and FCFS

3.1 The mutual exclusion algorithm

The inner algorithm is the mutual exclusion algorithm of Burns [10] and Lamport
[41]. It uses a single safe Boolean shared variable per thread, called cc[p], which is
initially false. The idea is that, when it starts competing, thread p makes cc[p] true,
and then inspects cc[q] for all threads q 6= p. Thread p traverses the list of threads
starting from thr = 0. When it encounters a thread thr < p with cc[thr], it gives
precedence to thr by making cc[p] false, waits until thr has made cc[thr] false, and
then sets cc[p] true and restarts its inspection loop, again starting from thr = 0.
When it has passed itself and finds a thread thr > p with cc[thr], it just waits until
thr has made cc[thr] false. When its inspection loop terminates, thread p can enter
CS. After CS, it makes cc[p] false.

This description applies to the lines 28. . . 34 of Figure 2 below.

3.2 Design for the FCFS property

Recall from Section 2.5 that FCFS means that when thread p enters Doorway while
thread q is in Waiting , thread p will not enter CS before q does.

The idea to establish the FCFS property is that a thread in Doorway announces
that it is competing by modifying a shared Boolean array turn, but before this
announcement it forms a private list of the threads that have announced and have
not yet completed CS. After Doorway , the thread waits until all threads in this
private list have completed CS. Then it can be served, i.e., participate in the inner
mutual exclusion algorithm. After that, it removes its announcement.
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This idea guarantees FCFS because the thread does not enter CS before all
threads in its private list have completed CS. Unfortunately, it can lead to deadlock,
as is shown by the following scenario: thread p0 announces itself, thread p1 observes
the announcement of p0 and announces itself, thread p0 concludes its competing
period (via CS), enters again, observes the announcement of p1, and announces
itself again. Now both p0 and p1 have announced and are waiting until the other
removes its announcement: deadlock.

In order to break these cyclic dependencies, we give the announcements version
numbers modulo a constant R > 1. This, however, is not enough, because while
thread p1 is in the doorway, thread p0 may cycle R times through competing periods
and then use the version number observed by p1 again.

In order to preclude this unrestricted progress, we let every thread (p1 in this
case) set the flag cc of the inner algorithm before it traverses the doorway, and reset
this flag before it starts waiting. This hampers progress because, while p1 is in the
doorway, thread p0 cannot complete the inner algorithm. It turns out that this idea
ensures absence of deadlock, provided we take R ≥ 3. This is proved in Section 4
(the requirement R ≥ 3 is needed there to imply the invariant Mq2A).

3.3 The new combined algorithm

The algorithm is given in Figure 2. We use labels beginning at 21 to ease proof
refactoring as described in Section 7. The fragment of the lines 28 up to 34 is
the mutual exclusion algorithm of Burns-Lamport as sketched in Section 3.1, i.e.,
the line (†) of Figure 1. Doorway of Figure 1 consists of the lines 22 up to 25,
WaitingFcfs consists of the lines 26 and 27, ExitFcfs is line 35.

The algorithm uses the index domains

Thread = {q ∈ N | q < N} ,
Range = {k ∈ N | k < N ·R} ,
Version = {e ∈ N | e < R} .

Every k ∈ Range has a unique expression k = q · R + e with q ∈ Thread and
e ∈ Version.

The algorithm uses the following shared variables:

cc : array [Thread] of Boolean ;
turn : array [Range] of Boolean .

The variables cc[p] and turn[p ·R+ e] with e ∈ Version are safe Boolean output
variables for thread p. In this way, the algorithm uses R+1 shared Boolean variables
per thread. Initially, all these shared Boolean variables are false.

A thread p sets its flag cc[p] at 22 when it enters the doorway, and resets it at
25 when leaving the doorway. It sets turn[p · R + nx.p] at 24 in the doorway, and
resets it after being served at 35. It thus uses a (persistent) private variable

nx : Version ,

as a version number. This means that nx.p determines the index p · R + nx.p in
array turn, where thread p indicates its interest in the critical section. After having
been served, the thread increments its version number nx.p with 1 modulo R for
the next time. We use the operator ⊕ to denote addition modulo R.

The threads also have the private variables

copy : array [Range] of Boolean ,
kk : Range ,
thr : {q ∈ N | q ≤ N} .
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thread (p : 0 ≤ p < N) =
21 NCS ;
22 cc[p] := (flickering) true ;
23 for all k ∈ Range do copy [k] := turn[k] end ;
24 turn[p ·R + nx] := (flickering) true ;
25 cc[p] := (flickering) false ;
26 while exists kk ∈ Range with copy [kk] do
27 await ¬ turn[kk] then copy [kk] := false

endwhile ;
28 cc[p] := (flickering) true ; thr := 0 ;
29 while thr < p do

if ¬ cc[thr] then thr := thr + 1
else

30 cc[p] := (flickering) false ;
31 await ¬ cc[thr] then goto 28

endif
endwhile ;
thr := p + 1 ;

32 while thr < N do
await ¬ cc[thr] then thr := thr + 1

endwhile ;
33 CS ;
34 cc[p] := (flickering) false ;
35 turn[p ·R + nx] := (flickering) false ; nx := nx ⊕ 1 ; goto 21 .

Fig. 2. The new algorithm for 4 shared bits

The array copy serves as a weak private copy of the shared array turn, made in
line 23. It is a copy in the sense that line 23 looks like copying, but it is weak
because we cannot claim any equality between copy .p and turn because of possible
interferences. The variable kk serves as an index in this array in lines 26, 27. The
variable thr is the loop variable of the inner algorithm 29. . . 32.

The elements of array copy are initially all false. The private variables nx, thr
and kk may have arbitrary initial values of their type. We allow thr = N in order
to have a stopping value at line 32.

3.4 The transition system of the algorithm

The transition system of the algorithm is drawn in Figure 3. The initial state has
label 21. The main repetition is the outer loop. It has the subloop 26–27, the self-
loops at lines 23, 29, 32, and the try-again loop via 30 and 31. The flickering self-
loops are indicated by circles around the locations 22, 24, 28, 30, 34, 35.

The individual transitions are most easily described in the syntax of our proof
assistant PVS. For PVS, we represent the state space as a datatype. The program
variables are fields in this datatype. We use x and y as variables of this datatype.
The value of pc.p in state x is represented by x‘pc(p). We define step(p, x, y) to
mean that (x, y) ∈ stepp; so p is the acting thread, and the old state x is replaced by
the new state y. The new state y is usually constructed by simultaneous substitution
using the WITH construction of PVS.

The relation step(p, x, y) is constructed as a union (disjunction) of step
relations at the different labels. The flickering assignments to cc and turn are
represented in the transition system as indicated in Section 2.4. For instance, for
cc at line 22, we use two step relations, one for the actual assignment:

step22(p, x, y): bool =
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Fig. 3. The transition system

x‘pc(p) = 22 AND

y = x WITH [ ‘cc(p) := true, ‘pc(p) := 23 ]

and a second one for the flickerings of cc at the lines 22, 25, 28, 30, 34:

stepCF(p, x, y): bool =

(x‘pc(p) = 22 OR x‘pc(p) = 25 OR x‘pc(p) = 28

OR x‘pc(p) = 30 OR x‘pc(p) = 34)

AND y = x WITH [ ‘cc(p) := NOT x‘cc(p) ]

Line 32 is also modelled by two atomic steps, one for the body of the loop:

step32B(p, x, y): bool =

x‘pc(p) = 32 AND x‘thr(p) < N

AND NOT x‘cc(x‘thr(p))

AND y = x WITH [ ‘thr(p) := x‘thr(p) + 1 ]

and a second one for the termination of the loop:

step32E(p, x, y): bool =

x‘pc(p) = 32 AND x‘thr(p) = N

AND y = x WITH [ ‘pc(p) := 33 ]

The loop of line 23 is modelled in essentially the same way, but we come back to
this loop in Section 3.6.

Loops that have inner labels are treated in the natural way. For example, at line
29, entering the loop body is modelled by

step29B(p, x, y): bool =

x‘pc(p) = 29 AND x‘thr(p) < p

AND y = x WITH [

‘thr(p) := IF x‘cc(x‘thr(p)) THEN x‘thr(p)

ELSE x‘thr(p)+1 ENDIF,

‘pc(p) := IF x‘cc(x‘thr(p)) THEN 30 ELSE 29 ENDIF

]

while termination of the loop is modelled by

step29E(p, x, y): bool =

x‘pc(p) = 29 AND p <= x‘thr(p)

AND y = x WITH [ ‘thr(p) := p+1, ‘pc(p) := 32 ]
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The numbered lines of Figure 2 thus correspond to the atomic steps of the
transition system. Every thread therefore is always at one label. The reader may
verify that every numbered line contains at most one inspection or modification of
a shared variable. We write p at ` for pc.p = `. In that case, thread p has yet to
execute line `. If L is a set of line numbers, we write p in L to indicate that p at `
holds for some ` ∈ L. We use line numbers starting at 21 to ease proof refactoring
as described in Section 7.

3.5 The inner algorithm to guarantee mutual exclusion

Mutual exclusion (MX) at the critical section CS is expressed by the invariant:

MX: q at 33 ∧ r at 33 ⇒ q = r .

Note that, by postulating such an invariant, we implicitly mean that it holds for all
values of the free variables (q, r, . . . ).

We define the state function

hot(q) = q in {29, 32, 33} ,

which expresses that thread q in the region 29—33, and is not at 30 or 31 from
which it will go back to line 28. We next claim the invariant

Iq0: hot(q) ⇒ cc[q] .

Indeed, it is straightforward to prove that predicate Iq0 is inductive: it holds initially
(because then hot(q) is false), and is preserved in every step. We use “q”s in the
names of invariants to ease proof refactoring as described in Section 7.

Now predicate MX is implied by the new invariants:

Iq1: q in {33 . . .} ⇒ thr.q ≥ N ,
Iq2: hot(q) ∧ r < thr.q ∧ hot(r) ∧ q < thr.r ⇒ q = r .

Indeed, by Iq1, we have that q at 33 implies hot(q) ∧ r < thr.q. Therefore, Iq2
implies MX .

Predicate Iq1 is inductive, because the loop of q at line 32 terminates with
thr.q ≥ N . Preservation of Iq2 is proved as follows. Assume that some thread p
does a step that falsifies Iq2. Then q 6= r, and the step of thread p makes the
antecedent of Iq2 true. Then p = q or p = r, because only q and r can change the
value of Iq2. By symmetry, we may assume p = q. In Iq2, the step of p (= q) can
then only influence hot(q) or thr.q. To falsify the implication of Iq2, its consequent
being false (q 6= r), the antecedent should become true. When hot(q) becomes true
in step 28, thr.q becomes 0, contradicting r < thr.q. Therefore, hot(q) holds in the
precondition, and the step of q is the incrementation of thr.q in line 29 or 32. In
the precondition of the step, we therefore have r = thr.q, and hot(r) because the
other conjuncts of the antecedent of Iq2 must evaluate to true. By Iq0 for thread
r, this implies cc[thr.q], contradicting the guard of the incrementation in line 29 or
32. This proves:

Theorem 1. The algorithm satisfies mutual exclusion.

To formally prove that MX is an invariant, we prove that the conjunction of the
universal quantifications of Iq0, Iq1, Iq2 (and some other predicates) is inductive
and therefore an invariant, and that it implies MX .

The inner algorithm also has the obvious invariant:

Iq3: q at 32 ⇒ q < thr.q ,

which is needed in the proof of absence of immediate deadlock in Section 4.
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3.6 The outer algorithm guarantees FCFS

As announced, the FCFS property means that, when thread p enters Doorway while
thread q is in Waiting , thread p will not be served before q. We specify this formally
by introducing a variable central to hold the set of the central threads, i.e., those
that are in Waiting or CS, and by giving each thread p a set of predecessors,
predec[p], equal to central when it enters the Doorway . We thus introduce two
shared history variables:

central : set[Thread] ,
predec : array[Thread] of set[Thread] ,

with initially central = ∅ and predec[p] = ∅ for all threads p.
The FCFS property is specified by Figure 4. Just before a thread p enters

Doorway , the set predec[p] becomes central. Before starting Waiting , thread p
enters central. After CS, thread p leaves central and predec[q] for all threads q.
FCFS is expressed by the requirement that thread p is not served before predec[p]
is empty. The modifications of central and predec are supposed to be atomic.
This is possible because they are history variables: they only serve to specify and
prove, not to compute.

thread (p : 0 ≤ p < N) =
`0 : NCS ; predec[p] := central ; Doorway ;
`1 : central[p] := true ; Waiting ;
`2 : await predec[p] = ∅ ;

being served ;
`3 : central[p] := false ; for all q do predec[q][p] := false end ;

Exit ; goto `0 .

Fig. 4. The specification of FCFS

In order to show that the algorithm of Figure 2 satisfies this specification, we
extend it with actions on the history variables central and predec in Figure 5,
and prove that predec[p] is empty when p is being served. We let the labels `0, `1,
`3 of Figure 4 correspond to the line numbers 21, 24, and 34 of the Figures 2 and 5.
As the Doorway must not contain wait statements, it is important to verify that all
waiting in Figure 5 occurs after label `1, i.e., line 24. The modifications of central
and predec can be combined atomically with the same line of Figure 2. This is
allowed because they are history variables [1] (called auxiliary variables in [52]):
they do not influence the computation and only serve in the proof of correctness. It
is clear from Figure 5 that central satisfies the invariant:

Kq0: r ∈ central ≡ r in {25 . . . 34} .

We need to place label `2 of Figure 4 somewhere before CS. For convenience, we
place it at line 28, in the sense that we prove the invariant that predec[q] is empty
unless thread q is in the region from 22 to 27:

FCFS: predec[q] = ∅ ∨ q in {22 . . . 27} .

Indeed, it follows from Kq0 that, while thread p is in {22 . . .}, the variable predec[p]
holds all its predecessors, the threads that have announced before p executed line
21 and have not yet reached line 35. The invariant FCFS thus expresses that all its
predecessors have reached line 35 when p is in {28 . . .}, and in particular when p is
at CS. This implies the first-come-first-served property as defined in Section 2.5.
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thread (p : 0 ≤ p < N) =
21 predec[p] := central ;

for all k do turnset[k] := true end ;
22 cc[p] := (flickering) true ;
23 while exists k with turnset[k] do

copy [k] := turn[k] ; turnset[k] := false
endwhile ;
cnt := shacnt ; shacnt := shacnt + 1 ;

24 turn[p ·R + nx] := (flickering) true ; central[p] := true ;
25 cc[p] := (flickering) false ;
26 while exists kk with copy [kk] do
27 await ¬ turn[kk] then copy [kk] := false

endwhile ;
28 cc[p] := (flickering) true ; thr := 0 ;
29 while thr < p do

if ¬ cc[thr] then thr := thr + 1
else

30 cc[p] := (flickering) false ;
31 await ¬ cc[thr] then goto 28

endif
endwhile ;
thr := p + 1 ;

32 while thr < N do
await ¬ cc[thr] then thr := thr + 1

endwhile ;
33 CS ;
34 cc[p] := (flickering) false ; central[p] := false ;

for all q do predec[q][p] := false end ;
35 turn[p ·R + nx] := (flickering) false ;

nx := nx ⊕ 1 ; inc := inc + 1 ; goto 21 .

Fig. 5. History extension of the 4 bit algorithm

For convenience, we give the complete extension of the algorithm with history
variables in Figure 5. The reader may verify that Figure 5 only differs from Figure
2 in the lines 21, 23, 24, 34, and 35. Moreover, central and predec only occur in
the lines 21, 24, and 34, and do not influence the computation. For simplicity, in
Figure 5, we omit NCS from line 21 as irrelevant.

The order of inspection of the elements of array turn in line 23 is irrelevant. In
order to verify this, we give each thread a private array turnset of the same type
as copy to indicate the indices k for which it still has to inspect turn[k]. Variable
turnset only occurs in the lines 21 and 23 of Figure 5. It is initially empty. It is set
in line 21 for the ease of invariant Kq1 below.

Anticipating the proof of immediate deadlock, we introduce a shared integer
history variable shacnt and private integer history variables cnt to determine the
order in which the threads arrive at line 24. These variables only occur at the end of
line 23 of Figure 5. We come back to this in Section 4. The private history variable
inc incremented in line 35 will be used in the proof of progress (Section 5).

In order to prove the invariant FCFS, we need some other invariants. For these
invariants, it is convenient to interpret the Boolean arrays turn, turnset.p and
copy .p for threads p, as sets of pairs (q, e) with q ∈ Thread and e ∈ Version,
according to the formulas:

(2) (q, e) ∈ turn ≡ turn[q ·R + e] ,
(q, e) ∈ turnset.p ≡ turnset.p[q ·R + e] ,
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(q, e) ∈ copy .p ≡ copy .p[q ·R + e] .

In this way, they become well-defined sets because every index k ∈ Range has a
unique expression k = q ·R + e with q ∈ Thread and e ∈ Version.

We postulate the invariants:

Kq1: r ∈ predec[q] ⇒ (r, nx.r) ∈ turnset.q ∪ copy .q ,
Kq2: turnset.q = ∅ ∨ q in {22, 23} ,
Kq3: copy .q = ∅ ∨ q in {23 . . . 27} .

It is clear that these three predicates together imply FCFS as defined above. Note
that we would have to formulate Kq1 in a more complicated way if we had initialized
turnset in line 22 instead of line 21.

It is easy to see that the predicates Kq2 and Kq3 hold initially, are preserved
under every step of q, and also under every step of a thread 6= q. They are therefore
inductive, and hence invariants.

Predicate Kq1 holds initially because predec[q] is empty. It is threatened only
by the modifications of predec[q], turnset.q, copy .q, and nx.r in 21, 23, 27, 35.
It is preserved by thread q in line 21 because (r, nx.r) ∈ turnset.q becomes true.
It is preserved by q under the modifications of turnset and copy in lines 23 and
27 because of the additional invariants Kq4 and Kq5 below. At line 27, the guard
¬ turn[r] is used to infer that thread r is no longer in central. Note that the
history variable predec[q] is modified when thread r executes 34. Predicate Kq1 is
preserved under the modification of nx.r in line 35 because Kq0 and Kq4 imply
that thread r is not in predec[q][r] when it is at line 35.

Kq4: predec[q] ⊆ central ,
Kq5: r ∈ central ⇒ (r, nx.r) ∈ turn .

The predicates Kq4 and Kq5 are easily seen to be invariant (use Kq0 to prove
preservation of Kq5 at lines 24 and 35).

4 Absence of immediate deadlock

As a first step in the proof of deadlock freedom, we prove absence of immediate
deadlock as defined below. This is weaker, because immediate deadlock is a special
form of deadlock.

A step of thread p is a pair of states in the step relation stepp. We partition the
steps of p in two types: forward steps and environment steps. We define a step of
p to be an environment step if it is the step from line 21 to 22, or a flickering step
in which pc.p remains unchanged. All other steps of p are forward steps of p. The
reader may verify that the forward steps are the solid arrows of Figure 3, and also
that they are the steps that begin with p not at line 21 and that modify pc.p or
the loop variables thr.p or turnset.p. The step of 21 is called an environment step
because it is the request for access to the critical section. The flickering steps do not
belong to the algorithm, but are part of the environment that the algorithm has to
accommodate. In other words, the environment steps define the problem while the
forward steps form the solution.

One can argue that the critical section CS is also executed by the environment,
but for the proof of progress we need the assumption that CS terminates. We
therefore treat CS as a forward step.

We define a state to be in immediate deadlock when there are competing threads
and none of these can do a forward step. Absence of immediate deadlock is a safety
property, while absence of deadlock as defined in section 1.4 is a liveness property.
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We define a thread to be forward disabled iff it cannot do a forward step. It
is easy to verify that thread p is forward disabled if and only if it satisfies the
condition:

Dis(p) ≡
p at 21 ∨ (p at 27 ∧ turn[kk.p]) ∨ (p in {31, 32} ∧ cc[thr.p]) .

When it is at a flickering location, 22, 24, etc., thread p is not disabled because it
can do the actual assignment, which is a forward step.

We turn to the proof of absence of immediate deadlock. For the first step of the
proof, we claim the easy invariant:

Lq0: cc[q] ⇒ q in {22 . . . 25} ∪ {28 . . . 30} ∪ {32 . . . 34} .

Indeed, it is inductive: it holds initially and is preserved in every step. Note that
Lq0 is an implication, not an equivalence: due to flickering, cc[q] can be true when
q is at 22, and it can be false when q is at 25 (etc.).

Lemma 1. Assume that all threads are forward disabled. Then all threads are at
lines 21 or 27.

Proof. By condition Dis, all threads are idle (at line 21) or forward disabled at
one of the lines 27, 31, or 32. Therefore, if there are threads q for which cc[q]
holds, all of these are at 32 because of the invariant Lq0. Let q1 be the highest
number q with cc[q]. Then q1 is a thread, it is at line 32, and is forward disabled.
It therefore satisfies thr.q1 < N and cc[thr.q1]. By invariant Iq3 of Section 3.5, we
have q1 < thr.q1 < N . As cc[thr.q1] holds, this contradicts the maximality of q1
with cc[q1]. This implies that ¬ cc[q] holds for all threads q.

It follows that no thread can be forward disabled at 31 or 32. This proves that
all threads are at 21 or 27. 2

The main danger of immediate deadlock is therefore at line 27, at the interplay
between turn and copy .p. Absence of immediate deadlock thus relies on the order
in which different competing threads conclude their loop at line 23 where copy .p
gets its value.

To argue about this order, we record it in private integer history variables cnt.p
for all threads p. For this purpose, we also introduce a shared history variable
shacnt, and let cnt and shacnt be updated in the final step of loop 23 as given in
Figure 5. We initialize shacnt := 1 and cnt.p := 0 for all threads p. These variables
can be unbounded, and can be modified in one atomic command, because they are
only history variables.

The remainder of the proof of absence of immediate deadlock relies on three
invariants:

Lq1: q at 27 ⇒ copy .q[kk.q] ,
Lq2: (q, e) ∈ turn ⇒ q in {24 . . .} ∧ nx.q = e ,
Lq3: q in {24 . . .} ∧ (r, nx.r) ∈ copy .q ⇒ cnt.r < cnt.q .

Indeed, the predicates Lq1, and Lq2 are easily seen to be inductive. For Lq2, note
that, due to flickering of turn, (q, e) ∈ turn can be true when q is at 24, and false
when q is at 35.

Since the private variable cnt is set to the shared variable shacnt in the step
towards 24, the consequent of Lq3 expresses that the most recent step of thread
q towards 24 is later than the most recent step of r towards 24. We postpone the
proof of Lq3 because it is more difficult. We first prove that these invariants imply
absence of deadlock:

Theorem 2. Immediate deadlock does not occur.



18

Proof. Assume that none of the threads can do a forward step. Then, by Lemma 1,
all threads are at 21 or 27. Therefore every competing thread q is forward disabled
at 27, and has turn[kk.q] because of Dis(q), and copy .q[kk.q] because of Lq1. If
there is a thread at line 27, let q0 be the thread at 27 with the smallest value for
cnt.q. Write kk.q0 = r · R + e with r ∈ Thread and e ∈ Version. Then we have
(r, e) ∈ turn and (r, e) ∈ copy .q0. By Lq2, we have r in {24 . . .} and e = nx.r. By
Lq3, we have cnt.r < cnt.q0. This contradicts minimality of cnt.q0, because thread
r is competing and hence at 27. This proves that there are no competing threads
at all. 2

It remains to prove invariance of Lq3. Here the intricacies of the algorithm
appear. As suggested by a referee, we present the invariants in a bottom-up fashion.

We first claim the easy inductive invariants:

Mq0: cnt.r < shacnt ,
Mq1: q in {23, 24} ⇒ cc[q] .

It is in Mq1 that the double role of array cc in the outer and the inner algorithm
is exploited.

We next claim a complicated invariant that expresses that the contents of copy .q
are not “too outdated” when thread q is in {23, 24}:

Mq2: q in {23, 24} ∧ (r, e) ∈ copy .q ∧ nx.r 6= e
⇒ nx.r = e⊕ 1 ∧ r in {. . . 32} ∧ (r in {. . . 28} ∨ thr.r ≤ q) .

The second and third conjunct of the consequent of Mq2 are included because they
help in the proof of invariance of the first conjunct. Predicate Mq2 holds initially
because then q is at 21. It is threatened only at the lines 22, 23, 29 and 32. It
is preserved at line 22 because Kq3 implies that copy .q is empty at line 22. It
is preserved at line 23 by the update copy .q[k] := turn[k] because of Lq2. It is
preserved at lines 29 and 32 because when thread r falsifies thr.r ≤ q, it does so
under the precondition thr.r = q and hence ¬ cc[q] because of the code; therefore q
is not in {23, 24} because of Mq1.

The assumption R ≥ 3 implies that v ⊕ 1 6= e for each v ∈ {e, e ⊕ 1}. Taking
v = nx.r, we see that Mq2 implies:

Mq2A: q in {23, 24} ⇒ (r, nx.r ⊕ 1) /∈ copy .q .

We further delimit the outdatedness of copy .q in the invariant:

Mq3: (r, nx.r ⊕ 1) ∈ copy .q ⇒ r at 21 ∨ q ∈ predec[r] .

Predicate Mq3 holds initially because copy .q is empty. It is threatened at the lines
21, 23, and 34. It is preserved by the update copy .q := turn[k] in line 23 because of
Lq2 and R > 1 (to guarantee nx.r ⊕ 1 6= nx.r). It is preserved by the modification
of predec in line 34 because Kq3 implies that q is not at 34.

Preservation of Mq3 when thread r leaves line 21 is more complicated. At this
point, predec[r] gets a new value. The antecedent of Mq3 implies by Kq3 and
Mq2A that thread q is in {25 . . . 27}. Therefore, by Kq0, we have q ∈ predec[r].

The invariants Mq3 and FCFS together imply the derived invariant:

Mq3A: (r, nx.r ⊕ 1) ∈ copy .q ⇒ r in {. . . 27} .

We next claim the invariant:

Mq4: (r, nx.r) ∈ copy .q ⇒ r in {24 . . .} .
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Predicate Mq4 holds initially because then copy .q is empty. It is threatened at lines
23 and 35. It is preserved by the update copy .q[k] := turn[k] in line 23 because of
Lq2. It is preserved by the modification of nx.r in line 35 because of Mq3A.

We can finally prove predicate Lq3. It holds initially because then q is at line
21. It is threatened at lines 23 and 35. At line 23, it is preserved under the step
to line 24 by thread q because of Mq0, and by the step to line 24 of r because of
Mq4. It is preserved at line 35 because of Mq3A. This concludes the proof of the
invariance of Lq3 and hence of Theorem 2.

Note that the nonatomicity of the elements of the arrays turn and cc comes up
in the invariants Iq0, Kq5, Lq0, Lq2, and Mq1. Atomicity of these elements would
allow the stronger invariants:

Kq5a: (q, e) ∈ turn ≡ q in {25 . . . 35} ∧ nx.q = e ,
Lq0a: cc[q] ≡ q in {23 . . . 25} ∪ {29, 30} ∪ {32 . . . 34} .

For us, these predicates are no invariants because of the flickering in the lines 22,
24, 25, 28, 30, 34, and 35. For instance, Kq5a is not preserved when turn[p ·R+nx]
flickers at line 35. Then (p,nx.p) leaves the set turn, while p remains at 35 and
does not modify nx.p.

5 Liveness: lockout freedom

In the algorithm of Figure 2, some thread, say p, can be forced repeatedly to jump
back from 31 to 28, perhaps only because some thread q < p is doing a flickering
assignment to cc[q]. Therefore, even though we have proved absence of immediate
deadlock, we still need a careful proof of liveness.

This is proved in this section: under the assumption of weak fairness, we prove
that every thread is eventually always idle, i.e., at line 21. This implies lockout
freedom: every competing thread eventually passes CS to come back to line 21.

Roughly speaking, the argument is as follows. If there is a thread that remains
competing, FCFS implies that from some point onward no thread can enter CS
anymore. Weak fairness then implies that every thread eventually either gets stuck
at one of the lines 21, 27, 31 or 32, or remains forever cycling over 28–31. We
eliminate the latter possibility by considering the cycling thread with the lowest
number. We eliminate the locations 27, 31, 32 by invoking Theorem 2, the absence
of immediate deadlock.

5.1 A variant function for progress

To formally prove the limit behaviour suggested, we construct an integer valued
state function avf (p) that expresses progress for thread p, and that grows propor-
tionally to the number of times the thread executes the critical section.

This is done in the following way. As shown in Figure 5, each thread p has a
private history variable inc.p which is incremented with 1 whenever thread i executes
line 35 and goes back to NCS (inc abbreviates “incarnation”). We now introduce a
numerical constant A and the variant function

avf (p) = A · inc.p + (p in {28 . . . 31} ? 7 : pc.p− 21)
+ (p in {22 . . .} ? 3 ·N ·R− 3 ·#turnset.p− 2 ·#copy .p : 0)
+ (p in {32 . . .} ? thr.p : 0) .

Here, (b ? x : y) is the conditional expression if b then x else y endif , as in the
programming language C. The notation #S denotes the number of elements of S
regarded as a set. It is clear that avf (p) changes only when thread p itself does a
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step. We choose A ≥ 3 ·N ·R+N + 15. We infer from this that the jump from line
35 to line 21 increases avf (p) and that avf (p) never decreases. Indeed, most forward
steps of thread p increase avf (p). For example, the step from 23 to 23 removes one
element of turnset.p and possibly adds one elements to copy .p. The only exceptions
are the steps within the loop 28–31, which keep avf (p) constant. We have chosen
to keep avf (p) constant in this loop in order to keep it at least nondecreasing.

The growth of avf (p) is proportional to the growth of inc.p because of

A · inc.p ≤ avf (p) < A · (inc.p + 1) .

5.2 Weak fairness

We prove that under the assumption of weak fairness every thread that enters at
line 22 eventually comes back to the noncritical section. We need weak fairness for
this, because otherwise the thread can remain in the doorway, or another thread
might block it by infinitely many flickerings.

The assumption of weak fairness means that we restrict the attention to weakly
fair executions. Roughly speaking, we assume that every occurring execution of the
system is weakly fair. Recall that an execution is an infinite sequence of states that
starts in an initial state and has a step between every pair of subsequent states. An
execution is called weakly fair iff, whenever from some state onward some thread
q can always do a forward step, thread q will eventually do the step. Recall that a
forward step is a nonflickering step from a location 6= 21 (see Section 4).

We formalize these concepts in a set-theoretic version of temporal logic. Let X
be the state space. We identify the set Xω of the infinite sequences of states with the
set of functions N → X. For a sequence xs ∈ Xω and n ∈ N, we occasionally refer
to xs(n) as the state at time n. For a subset U ⊆ X, we define [[U ]] ⊆ Xω as the
set of sequences xs with xs(0) ∈ U . For a relation A ⊆ X2, we define [[A ]]2 ⊆ Xω

as the set of sequences xs with (xs(0), xs(1)) ∈ A.
For xs ∈ Xω and m ∈ N, we define the shifted sequence drop(m, xs) by

drop(m, xs)(n) = xs(m + n). For a subset P ⊆ Xω we define 2P and 3P as
the subsets of Xω given by

xs ∈ 2P ≡ (∀ m ∈ N : drop(m, xs) ∈ P ) ,
xs ∈ 3P ≡ (∃ m ∈ N : drop(m, xs) ∈ P ) .

We read 2P as always P , and 3P as eventually P .
We now apply this to the algorithm. We write init ⊆ X for the set of initial states

and step ⊆ X2 for the step relation on X. Following [1], we use the convention that
relation step is reflexive (contains the identity relation). An execution is an infinite
sequence of states that starts in an initial state and in which each subsequent pair
of states is connected by a step. The set of executions of the algorithm is therefore

Ex = [[ init ]] ∩2[[ step ]]2 .

By induction, every state in an execution satisfies all invariants proved for the
algorithm. For any thread q, the numbers inc.q and avf (q) form nondecreasing
sequences along any execution.

We define (q at 21) to be the subset of X of the states in which thread q is at
line 21. An execution in which thread q is always eventually at NCS, is therefore
an element of 23[[ q at 21 ]].

Weak fairness is formalized as follows. Let fw(q) ⊆ X2 be the set of forward
steps of thread q. Using forward-disabledness as defined in Section 4, an execution
is defined to be weakly fair [44] for thread q iff thread q is always eventually forward-
disabled or it always eventually does a forward step. In other words, iff xs belongs
to the set
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WF(q) = 23[[Dis(q) ]] ∪ 23[[ fw(q) ]]2 .

The set of weakly fair executions is defined as the intersection (conjunction):

WFEx = Ex ∩
⋂

q WF(q) .

Remark. The strength of weak fairness depends in an essential way on the grain
of atomicity. For example, if thread p performs a sequence of flickering steps at
line 22, in our transition system it remains at line 22, and is therefore continuously
enabled to do the forward step in which it goes to line 23 and makes cc[p] true.
Weak fairness therefore implies that the flickering at line 22 terminates.

If we would split the flickering step into a part that does the arbitrary assignment
to cc[p] and goes to some other label, and a second part in which p jumps back
to 22, the forward step of p would not be continuously enabled and, under weak
fairness, flickering would not necessarily terminate.

5.3 Liveness

In this section, we claim and prove the main liveness result:

Theorem 3. In every weakly fair execution, every thread q is always eventually at
NCS.

This is expressed in the temporal formula:

(3) WFEx ⊆ 23[[ q at 21 ]] .

This is lockout freedom under assumption of weak fairness: every competing thread
eventually returns to NCS; therefore it must have been served.

We have proved the theorem formally with the proof assistant PVS, but we
present the proof here in a less formal way. In particular, we use the words always
and eventually for the operators 2 and 3.

The proof of the theorem is based on inc and avf as introduced in Section 5.1.
Let us define an execution to be always busy for q if it is not always eventually idle
(at 21). We shall prove that every weakly fair execution is not always busy.

Thread q increments inc.q only when it goes back to 21. Therefore, if the exe-
cution is always busy for q, inc.q is bounded.

Lemma 2. If an execution is weakly fair for q and has inc.q bounded, then pc.q is
eventually constant with one of the values 21, 27, 31, or 32, or pc.q remains cycling
through 28–31.

Proof. Because of avf (q) < A · (inc.q + 1), we have that avf (q) is also bounded.
Because avf (q) never decreases, it follows that avf (q) is eventually constant.

Assume that pc.q is eventually constant, say pc.q = ` for all states from time n
onward. If ` ∈ {21, 27, 31, 32}, we are done. Otherwise, from time n onward, Dis(q) is
false and thread q is continuously forward enabled. By weak fairness, it will therefore
eventually take infinitely many forward steps. As these do not increase avf (q) or
modify pc.q, we have that ` = 29 and that every forward step of q increases thr.q.
Therefore, the guard of line 29 will force q to jump to line 32, a contradiction.

If pc.q is not eventually constant, the fact that avf (q) is eventually constant
implies that thread q is eventually cycling in the loop 28–31. 2

Lemma 3. Consider an execution that is weakly fair for all threads and that is
always busy for some thread r. Then, for every thread q (including r), pc.q is even-
tually constant with one of the values 21, 27, 31, or 32.
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Proof. By Lemma 2, from some time n0 onward, thread r is always in {27 . . . 32},
and therefore in central by Kq0. It follows that inc.r is bounded. Any thread q 6= r
that enters after time n0, gets r ∈ predec[q]. By FCFS, such a thread q cannot go
beyond line 27, and therefore cannot increment inc.q again. This implies that inc.q
is bounded for every thread q, including r. By Lemma 2, every thread q therefore
has pc.q eventually constant with one of the values 21, 27, 31, or 32, or it remains
cycling through 28–31.

To prove that the latter alternative does not occur, we consider the set S of the
threads q that remain cycling through 28–31. All threads q /∈ S have pc.q eventually
constant with one of the values 21, 27, 31, or 32. As the set of threads is finite, there
is a time n1 ≥ n0 such that, from time n1 onward, for every thread q /∈ S, we have
pc.q constant with one of the values 21, 27, 31, 32. By Iq0 and Lq0, it follows that,
from time n0 onward, cc[q] is constant for every q /∈ S.

It suffices to prove that the set S is empty. Assume that S is nonempty. Let p ∈ S
be the smallest number in S. Thread p remains cycling through 28–31. Therefore, at
line 29, at some time after n1, thread p observes cc[thr.p] so that it can go to 30. At
line 31 it then eventually observes ¬cc[thr.p] to go back to line 28. This concerns
the same value of thr.p. Therefore, the value of cc[thr.p] changes after time n1.
This implies that thr.p ∈ S. The guard of line 29 is thr.p < p. This contradicts
minimality of p in S. Therefore S is empty. 2

We turn to the proof of Theorem 3. Consider a weakly fair execution. Assume
that it is always busy for some thread. By Lemma 3, for every thread q, pc.q is
eventually constant with one of the values 21, 27, 31, or 32. As above, there is a
time n0 such that from time n0 onward, for every thread q, we have pc.q constant
with one of the values 21, 27, 31, 32. Moreover, we may assume that, from time n0

onward, avf (q) is constant for every thread q. Theorem 2 implies that some thread,
say p, is forward enabled at time n0.

The only steps that can be taken at time n0 by any thread are forward steps at
27, 31, 32, and the environment step from 21 to 22. The assumptions imply that none
of these steps is taken. Therefore, thread p remains forward enabled indefinitely. By
weak fairness it will eventually take a step, thus contradicting the assumptions. This
proves Theorem 3. 2

6 Variations of the Algorithm

The Boolean array cc serves two roles in the algorithm. In the lines 22 and 25, it
guards Doorway . In the lines 28. . . 32, it guarantees mutual exclusion. This has the
effect that a thread (say p) at line 29 can be forced to repeatedly restart its loop
at 28 because another thread (q < p) is in Doorway . This restarting can happen at
most p times. When it happens, all threads r in the lines 22–27 with p ∈ predec[r]
also have to wait.

If there are many threads (large N), this may be bad for performance. Moreover,
in principle, it is superfluous: we can split the two roles of cc.

6.1 A separate guardian for the doorway

For large N , therefore, it may be better for performance to split the roles of cc by
introducing a second Boolean array, say dw for doorway, and replacing cc by dw in
the lines 22 and 25. Array dw has length N , and its elements are initially all false.
In order to preclude the unrestricted progress mentioned in Section 3.2, we then
need to introduce another waiting loop:

(*) for all q do await ¬ dw[q] end ,
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which can be placed before line 22, or 26, or 28, or 33.
This can be optimized even further by letting every thread make a private copy

dwcopy of dw. In this way, we arrive at a variation of Figure 2 where the lines
21. . . 25 are replaced by Figure 6. Note that the loop (*) is replaced by lines 24 and
25. Obviously, in line 35, command goto 21 must be replaced by goto 18.

18 NCS ;
19 for all threads q do dwcopy [q] := dw[q] end ;
20 dw[p] := (flickering) true ;
21 for all k ∈ Range do copy [k] := turn[k] end ;
22 turn[p ·R + nx] := (flickering) true ;
23 dw[p] := (flickering) false ;
24 while exists q with dwcopy [q] do
25 await ¬ dw[q] then dwcopy [q] := false

endwhile .

Fig. 6. The variation for 5 shared bits. These lines replace lines 21. . . 25 of Fig. 2.

With respect to average performance, one may hope that, when thread p at line
19 observes that q is in Doorway , thread q usually has left Doorway when thread p
is at line 25.

The correctness proof of the main algorithm can be easily adapted to the vari-
ation. The line numbers have to be shifted carefully. The main difference is in the
invariants Mq1 and Mq2, which are replaced by

Mq1B: q in {21, 22} ⇒ dw[q] ,
Mq2B: q in {21, 22} ∧ (r, e) ∈ copy .q ∧ nx.r 6= e

⇒ nx.r = e⊕ 1 ∧ (r at 18 ∨ threadset.r[q] ∨ dwcopy .r[q]) ,

where threadset.r[q] means that thread r is at line 19 and has yet to treat thread q
in its loop. As with Mq2, the second conjunct of the consequent of Mq2B is needed
to prove preservation of the first conjunct. In the present version the unrestricted
progress mentioned in Section 3.2 is precluded by waiting at line 25 by means of
dw, while our main algorithm does so at the lines 29 and 32 by means of cc.

In Lq3, Mq2A, Mq3, and Mq4, only line numbers have to be changed. We also
need some new but obvious invariants about threadset, dw, and dwcopy .

In the proof of liveness, the variant function avf needs to be adapted. It must
increase whenever thread p executes the loop body of line 19 (removes a thread
from threadset.p) or executes line 25 (puts dwcopy .p[q] := false and goes to 24):

avf (p) = A · inc.p + (p in {28 . . . 31} ? 10 : pc.p− 18)
+ (p in {19 . . .} ? 3 ·N ·R− 3 ·#turnset.p− 2 ·#copy .p

+ 3 ·N − 3 ·#threadset.p− 2 ·#dwcopy .p : 0)
+ (p in {32 . . .} ? thr.p : 0) .

Because of the two extra loops (the second one has two lines), the condition on A
has to be replaced by A ≥ 3 ·N ·R+ 4 ·N + 18. In the proof of Theorem 3, we need
to reckon with the additional waiting at line 25. We have completely verified this
alternative by adapting the PVS proof of the shorter version, see [28].

As an alternative to Figure 6, the loop with dw tests at lines 24, 25 can be
postponed to the location just before the inner algorithm (line 28) or the critical
section (line 33). This would make the probability of waiting smaller, but in the
case of waiting other threads may be hindered more.



24

6.2 The version of Lycklama-Hadzilacos

On the other hand, the algorithm LH of [46] can be obtained from Figure 2, by
introducing the array dw (not using Figure 6), and replacing the assignements to
cc in the lines 22 and 25 by assignments to dw, by taking R = 2, adding a third
Boolean array v[N ] (also initially false), and modifying the lines 24, 26, 27, and 35
in the following way.

24a nx := nx ⊕ 1 ;
24b turn[2p + nx] := (flickering) ¬ turn[2p + nx] ;
24c v[p] := (flickering) true ;
26 for all q < N do
27 await ¬ dw[q]

∧ ¬ (v[q] ∧ copy [2q] = turn[2q] ∧ copy [2q + 1] = turn[2q + 1]) ;
35 v[p] := (flickering) false ; goto 21 .

Algorithm LH uses v[p] to indicate that thread p is competing and two turn bits
of p to encode the version number in Gray code, whereas our algorithm uses three
turn bits to indicate that thread p is competing together with its version number.

6.3 Efficiency

The await condition at line 27 of LH is much more complicated than the await
conditions in our algorithm at line 27. The paper [46] is not completely clear whether
the four shared variables inspected in line 27 need to be inspected in one atomic
inspection or in some specific order. In any case, the algorithm LH inspects 4N
shared bits at this point.

In the algorithm of Figure 2 with R = 3, the number of shared bits inspected at
line 27 is the number of elements of the set copy .p. This number is always smaller
than 3N . It is almost equal to the number of currently competing threads, and
therefore often much smaller than N .

The version of Section 6.1 additionally performs N inspections of dw at line 19,
and fewer than N inspections at line 25. Therefore, in either version, the number
of bits inspected is smaller than in algorithm LH , even if, for simplicity, we count
an await statement as a single inspection.

For large N , in both our algorithms, it pays to treat the private Boolean arrays
copy and dwcopy as sets, and to implement them (e.g.) as stacks. In this way, the
loop(s) at the lines (24, 25 and) 26, 27 can be much shorter than N iterations. A
similar optimization is not useful for the algorithm LH because, in LH , on the long
run, the average number of true bits in turn is N , because it is modified only by
toggles to turn in line 24b.

7 Applying a Proof Assistant

The verification that some predicate is preserved under all possible steps always
requires a case distinction. Usually, there are many innocent cases, and some or
several cases that requires special consideration or additional arguments. Mechanical
proof assistants are much better in separating the innocent cases from the interesting
ones than human verifiers.

Throughout the project we use the proof assistant PVS [53]. We have verified
both the algorithm of Figure 5 as presented in the Sections 3, 4, and 5, and the
variation presented in Section 6.1. The proof scripts are available at [28].

The first theory mx4bitS concerns the algorithm of Figure 5 with the proofs of
safety, i.e., mutual exclusion, FCFS, and absence of deadlock.
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The first thing to do is to define the state space, and then the step relations for
the individual steps. A sample of the step relations is given above in Section 3.4.
The step relation itself is defined as a disjunction (union) of all steps at all labels.
We then define each invariant separately, and prove its invariance. For instance,
predicate Kq0 is defined by

kq0(q, x): bool =

x‘central(q) IFF 25 <= x‘pc(q) AND x‘pc(q) <= 34

Here x‘central is the Boolean function corresponding to the set central in state
x. Preservation of this predicate is proved in

kq0_step: LEMMA

kq0(q, x) AND step(p, x, y) IMPLIES kq0(q, y)

Such a lemma means the implicit universal quantification over the free variables p, q
of type Thread and x, y of type State. In this case, PVS is able to prove the lemma
by the single command (grind), which performs all case distinctions required.

We mentioned in Section 3.6 that every index k ∈ Range has a unique expression
k = q · R + e with q ∈ Thread and e ∈ Version. In order to avoid many PVS
applications of this fact, we model the arrays turn, turnset.q and copy .q for threads
q, as Boolean functions on the product type Thread×Version. Therefore, predicate
Kq1 is defined by

kq1(q, r, x): bool =

x‘predec(q)(r) IMPLIES

x‘turnset(q)(r, x‘nx(r)) OR x‘copy(q)(r, x‘nx(r))

Preservation of Kq1 provided the precondition satisfies Kq0, Kq4, and Kq5, is
expressed by

kq1_step: LEMMA

kq1(q, r, x) AND step(p, x, y)

AND kq0(r, x) AND kq4(q, r, x) AND kq5(r, x)

IMPLIES kq1(q, r, y)

In order to prove this result, we first prove the much simpler result that Kq1 is
preserved without additional preconditions except at the lines 23, 27, and 35, as is
shown by

kq1_step_rest: LEMMA

kq1(q, r, x) AND step(p, x, y)

IMPLIES kq1(q, r, y) OR step23B(p, x, y)

OR step27(p, x, y) OR step35(p, x, y)

The lines 23, 27, 35 are treated one by one. For instance, line 23 (more precisely:
the loop body, not the step to line 24) is treated in

kq1_step_23: LEMMA

kq1(q, r, x) AND step23B(p, x, y)

AND kq4(q, r, x) AND kq5(r, x)

IMPLIES kq1(q, r, y)

When this has been done, lemma kq1_step can be proved. This way of attacking
the proof obligations makes it much easier to restore the proof when the algorithm
or invariants are modified.

When we have defined and proved all invariants, we construct the global invari-
ant and prove its inductivity as a verification of consistency. Here, we also construct
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the initial state and prove that it satisfies the global invariant. Finally, Theorem 2
(no immediate deadlock) is proved. All this is contained in one PVS theory of 82
lemmas. For the proof of absence of immediate deadlock we need the obvious in-
variant that every thread is always in {21 . . . 35}. We did not mention this invariant
before because human readers tend to take this for granted.

The proof of liveness under weak fairness given in Section 5 is verified in a second
PVS theory, mx4bitL, which is based on the first one. This theory consists of 33
lemmas. It is based on one general theory about functions from integers to natural
numbers with in total 8 lemmas. The combination of the theories is contained in
a single PVS dump file available at [28]. This site also contains a dumpfile that
verifies the variation presented in Section 6.1.

It is a lot of work to create the proof in this way, but when it is done, it gives con-
fidence, and the results can often be reused in modified situations. Indeed, initially
we found a different list of invariants for a different algorithm. We then refactored
the proof with cleaner invariants to accommodate a top-down presentation. Then
we simplified the algorithm and refactored again. Finally, we designed the varia-
tion of Section 6.1, submitted a corresponding version to PVS, and adapted the
verification such that it was proved as well. The line numbers starting with 21 and
the invariants with a q in the name are used for the ease of query-replacing in this
refactoring process.

Note that in the mechanical proof of safety, we exclusively argue in terms of the
states, the step relation, the initial state, the invariants, and the variant functions. It
is only for the proof of liveness that we define executions and the temporal operators
2 and 3.

8 Conclusions

Our algorithm is simpler than the one of [46], especially in the waiting conditions.
It requires four nonatomic shared bits per thread. In the case of many threads, we
have a possibly more efficient variation with five bits per thread.

The global invariant used for the proof of the algorithm is the conjunction of
the universal quantifications of the invariants of the five families Iq*, Kq*, Lq* ,
and Mq*. Of these so-called constituant invariants, only seven are not inductive,
namely Iq2, Kq1, Kq5, Lq3, Mq2, Mq3, and Mq4. The invariants MX and FCFS
are implied by the global invariant.

The number of invariants is a measure of the complexity of the proof, but not
a very precise one: it can be made smaller by combining all invariants in the global
invariant, or by combining some invariants in a single predicate. On the other hand,
it can be made bigger, e.g., by distributing Mq2 over the three conjuncts of its
consequent. Yet, it gives some idea of the difficulty of the algorithm.

As shown, we organize the verification around the invariants rather than around
the program text. In the method of the proof outlines, we would have to mention
most of the invariants almost everywhere. The invariants Iq3, Lq1, Mq1, Mq2 are
the only ones that are only applicable at one or two labels. On the other hand, con-
trol information is essential: Iq0, Kq1, Kq4, Kq5, and Mq0 are the only invariants
that do not mention the control state. In our view, this indicates that the method
of the proof outlines is inadequate for anything bigger than toy problems.

We need only eight simple invariants for the proofs of mutual exclusion and
FCFS, even though the proof of FCFS requires the introduction of a history variable.
More invariants are needed for the proof of absence of immediate deadlock. These
are more complicated, and mirror the subtlety of the algorithm.

It is possible to formalize the splitting of the algorithms of [46] and of Section 6.1
into a mutual exclusion algorithm and an FCFS algorithm by performing separate



27

verifications and then composing these in some way. Here, however, we have to agree
with Lamport [45]: it would be a way to make the proof harder.
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