An Assertional Criterion for Atomicity

Wim H. Hesselink, 7th December 2001
Dept. of Mathematics and Computing Science, Rijksuniversiteit Groningen
P.O.Box 800, 9700 AV Groningen, The Netherlands
Email: wim@cs.rug.nl, Web: http://www.cs.rug.nl/ wim

Abstract

A criterion is presented to prove atomicity of read-write objects by means
of ghost variables and invariants. The criterion is applied to Bloom’s con-
struction of a two-writer atomic register from two one-writer atomic reg-
isters and to the algorithm of Vitanyi and Awerbuch for the construction
of a read-write object with m readers and writers, based on m? read-write
objects for one reader and one writer. In both cases, the proof comes down
to the verification of a number of invariants. The hand-written proofs of
these invariants have been verified with a mechanical theorem prover.
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1 Introduction

In this paper we present a criterion for atomicity of read-write objects by means
of ghost variables and invariants. Since preservation of a given invariant in a
given algorithm is relatively easy to verify or falsify, the criterion makes rigorous,
even mechanical, verification easier. The criterion provides guidance to the
designer since it introduces the ghost variables with required invariants. It is up
to the designer to encode the ghost variables in such a way that the invariants
can be preserved. The criterion also reduces the possibility of errors in hand-
written proofs: the proof breaks into inevitable cases, and forces one to reason
about actions rather than execution traces.

1.1 Atomicity and blocking

Concurrency is introduced for efficient utilization of processing capability. It
may lead, however, to undesirable interferences, e.g., when two processes con-
currently need exclusive access to some resource. This is the mutual exclu-
sion problem of [7], in which blocking of processes is unavoidable. There are
cases, however, where undesirable interferences can be avoided without block-
ing. When available, such solutions are usually preferred since blocking has
always a performance penalty and introduces the danger of deadlock.

Nonblocking methods to avoid undesirable interferences are more difficult to
find and to argue about. Indeed, what are “undesirable interferences” and what
is the meaning of “nonblocking”? Instead of a negative goal as the avoidance
of undesirable interferences, we need a positive goal. This positive goal was
first defined in 1979 as serializability [22] or sequential consistency [17]. Later
refinements of the theory [12, 20] introduced the terms of linearizability and
atomicity.
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The term “nonblocking” can also be interpreted in many ways. It is related
to fairness (e.g. see [9]). In this paper, we interpret “nonblocking” as wait-free
[11]. Informally speaking, a concurrent system is wait-free when every process
can achieve its current goal in a bounded number of steps, independently of the
(in)activity of other processes.

When we know what we mean by atomicity (linearizability) and nonblocking,
the problem becomes to give nonblocking implementations of atomic objects of
various types. Now the problem of correctness arises. Indeed, since incorrect
solutions of concurrency problems do appear in the literature, the solutions must
be verified and must be verifiable for others.

1.2 Verification: assertions or behaviours

There are two methods for the verification of concurrent algorithms. One
method, the assertional approach, is to rely on invariants and variant functions,
cf. [21]. The alternative, the behavioural approach, is to argue about execu-
tion sequences where certain actions precede other actions, cf. [18]. In [15], we
introduced the terms synchrony and diachrony to distinguish these approaches.

The behavioural approach is closer to operational intuition and, often, also
to the requirements that we want to satisfy. The assertional approach is more
convenient for formal, possibly mechanical, verification. The two approaches
do not mix conveniently, but they are complementary and, for every nontrivial
algorithm, we need the right combination of them.

Indeed, the operational intuition often suggests that certain actions are
needed to establish certain properties. The operational intuition is unreliable,
however, when it comes to excluding undesirable interferences. Formal treat-
ment based on execution sequences can be quite elegant, cf. [19], but it always
requires analysis of all possible execution sequences and offers no structure to
exclude some of these. For the latter purpose, we often need invariants but
then we are back at the assertional approach. An assertional design method for
concurrent algorithms is presented in [8].

In our view, the designer may use all kinds of intuition to come to a rea-
sonable design or design step. Formal specification, analysis and proof in asser-
tional terms can then be used to give the indispensable complementary evidence
of correctness. We therefore aim at an assertional criterion for atomicity.

1.3 Grain of atomicity

Every formal verification is based on a mathematical model. In the case of con-
current algorithms where computations of different processes are interleaved
nondeterministically, the most critical modelling assumptions are about the
grain of atomicity, i.e., the sizes of the chunks that are guaranteed to remain
together in all interleavings. It may be easy to prove the correctness of an algo-
rithm under assumption of a coarse grain of atomicity, but this can impose too
severe restrictions on the implementation. A fine grain of atomicity is easier to
implement, but it may make it harder to prove the correctness of the algorithm.
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The solution is to apply hierarchy: use fine grain atomicity to implement
atomic commands of a coarser grain of atomicity. In other words, compos-
ite commands are accepted as atomic when they are behaviourally equivalent
to atomic commands. This idea was proposed in [17, 22] under the names of
sequential consistency and serializability. In [12], the formalization was sharp-
ened to linearizability, which is a property of the accessed data objects. Lynch
[20] introduces the term atomic for linearizability since there is no observable
difference.

When constructing an atomic data object with a given specification, two
ingredients must be combined: a sequential implementation of the required
functional behaviour and a set of primitive atomic data objects to control the
concurrency. The papers [11, 13], e.g., describe implementations of an arbi-
trary atomic data object, given a sequential implementation of its functional
behaviour, and using as primitives read-write registers, consensus registers and
a compare and swap register. In the present paper, we restrict ourselves to the
construction of atomic read-write registers and we only use read-write registers
with bounds on the numbers of readers and writers.

1.4 The applications

This investigation was triggered by Groote’s remark in [10] that he did not know
an elegant way to prove the correctness of Bloom’s construction of a two-writer
atomic register from two one-writer atomic registers. Indeed, Bloom’s original
proof in [3] is complicated, as well as behavioural. After some analysis, we
constructed a simpler and assertional proof.

Inspired by the proof of Bloom’s algorithm in [20] section 13.4.4, which is
behavioural, we here present a general assertional atomicity criterion for read-
write objects. This criterion is then used to prove Bloom’s algorithm [3] and
the algorithm of Vitanyi-Awerbuch [24]. In both cases, a comparison with the
behavioural proofs in Lynch’s book [20] is in order. Our assertional proofs
remain closer to the actual code and require verifications that are more easily
formalized for a mechanical theorem prover. The behavioural proofs of [20] are
more abstract, more conceptual, and better suited to interest and convince a
human audience.

Bloom’s algorithm is the construction of a two-writer atomic register for an
arbitrary number of readers from two one-writer atomic registers, by means of
one additional bit to express recentness. The algorithm of Vitanyi and Awerbuch
is an implementation of a read-write atomic object with m ports that can both
read and write, given m? registers, each for a single writer and a single reader.
It needs unbounded integers for the reading ports to choose the most recent
value.

1.5 Mechanical verification

In mathematics, handwritten proofs have served well for ages. Why then do we
need mechanical theorem proving for concurrency? In our view, the reason is
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that, broadly speaking, in concurrency the combinatorial complexity is higher
than in mathematics, although the conceptual complexity is lower. Even short
code fragments may require dull case distinctions that must be handled carefully
but can be dealt with effectively by a machine.

In concurrency, handwritten proofs have also the drawback that, when the
program is modified only marginally, the whole proof is in jeopardy. This is not
the case with mechanical proofs. If the old proof is applied to the new program,
the prover automatically indicates where the old proof needs modification. It
is our experience that, when the modification of the program is correct and not
too big, a moderate modification of the proof may be sufficient.

After our work in [13, 14, 15], we now have a prelude [16] that defines the
semantics of concurrency with shared variables in less than 120 lines for the the-
orem prover NQTHM of [4, 5]. This prelude can be used only for the assertional
approach. Indeed, it mainly defines a function that, given a concurrent program
and a list of shared variables, determines the possible atomic steps, i.e., how
the global state is modified when any of the processes executes a single atomic
command. For a specific program, we then let the prover verify a number of
lemmas that specify how each variable is modified by an atomic command. Af-
ter this, we use the prover to analyse whether proposed invariants are preserved.
As shown in [14], progress can also be verified.

In this system, we model nondeterminacy in the following way. We use
an auxiliary private variable oracle, which is a pair. Every nondeterministic
choice is based on the first component of oracle. After each inspection, oracle is
updated by means of the undefined function. The value of oracle is not allowed in
the invariants. Since the second component of oracle remains hidden, arbitrary
choice sequences can be generated in this way. Since oracle is a private variable,
its usage can be combined atomically with actions on shared variables.

A side-effect of our work with NQTHM on concurrency proofs is that it has
taught us sharper modes of reasoning about invariants.

1.6 Overview

In Section 2, we define atomicity of concurrent data objects, specialize to read-
write objects, and then present and prove our criterion for atomicity of the
latter, followed by a brief comparison with Lynch’s atomicity criterion.

In Section 3, we describe Bloom’s algorithm, transform it so as to apply
our atomicity criterion, prove the atomicity criterion by means of a number of
invariants, and give an indication how this proof is supplied to the theorem
prover.

Section 4 contains the treatment of the algorithm of Vitanyi and Awerbuch
along the same lines. This algorithm is a more straightforward illustration of
the criterion, in the sense that its treatment requires less creativity. Section 5
contains concluding remarks.
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2 Atomicity of concurrent objects

A concurrent data object is an automaton that holds a value, which can be
accessed and modified via a number of ports. Atomicity of an object means
that the object regarded as a black box cannot be distinguished from an object
in which the operations take place instantaneously, even though invocations and
responses may require some time. It follows that the implementer of an atomic
object has two responsibilities: correct functional behaviour and atomicity.

In this paper, we treat atomicity of read-write objects. A read-write object
is an object that only allows the value to be read or to be replaced by another
value. Since we like to treat actual protocols by means of assertional reasoning,
we present an assertional criterion for atomicity of read-write objects and we
apply it to two of the examples in [20]. We shall prove the validity of our
criterion by relating it to the formal definition of atomicity. We therefore start
with the formal definitions of concurrent data objects and their atomicity. We
use a terminology close to those of [12, 13, 20].

2.1 General definitions

A wvariable type T is a tuple T = (V, Inv, Res, vo, f) where V', Inv and Res are
sets, vg is an element of V', and f is a function f : V x Inv — V X Res. An
object of type 7 is an automaton that holds a current value v € V', which
initially equals vg. The set Inv holds the possible invocations of objects of type
T, the set Res is the set of responses. The effects of the invocations on the
current value and the responses are determined by the transition function f in
the following way. If an object of type 7 holds current value v € V and is
invoked by u € Inv, it gets a new value w € V and responds with r» € Res, as
determined by f(v,u) = (w, ).

The object is called concurrent if it can be accessed concurrently over a finite
number of ports in such a way that an invocation over some port is eventually
answered by a response over the same port. The port cannot be used for a new
invocation before this response has come.

The observable behaviour of the object is determined by its set of executions.
Executions are defined in the following way. Let us define communication to
mean invocation or response. An ezxecution of the object is a finite or infinite
sequence e of pairs (g, u) with ports ¢ and communications u. An execution
e is well-formed iff, for every port ¢, the subsequence of e of the pairs with
first component ¢ alternates between invocation and response and starts with
an invocation. The last invocation of ¢ need not (yet) have a corresponding
response.

Since invocations and responses over different ports may interleave, we have
to specify the relation between invocations and responses carefully. The con-
current object is called atomic iff all its executions are legal, where, informally
speaking, an execution is legal if its responses can be justified by postulating
interleaved transitions of the object. Each transition must take place atomically
at some moment between invocation and response. This is formalized as follows.
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An operation is a triple {(u, w,r) where u is an invocation, w is a value, and
r is a response. We regard w and r as the new value and response resulting
from invocation w. A history is a sequence of pairs (g, z) where each ¢ is a port
and each z is a communication or an operation.

If h is a history and p is a port, the local history h,, is the subsequence of h of
the pairs with first component p, from which the (now redundant) first compo-
nents p have been removed. A local history h, is well-formed iff every response
r in it is immediately preceded by some operation (u,w,r) and every operation
(u,w,r) in it is immediately preceded by the invocation v and every invocation
(except for the very first invocation) is immediately preceded by some response.
So, the last invocation of p need not (yet) have a corresponding operation and
the last operation of p need not (yet) have a corresponding response. A history
h is well-formed iff its local histories hg, for all ports ¢, are well-formed.

A history h fits an execution e iff e is obtained from h by removing all
pairs (g, z) where z is an operation. Informally speaking, the operations can
be removed since they are not observable, but they have to take place at some
moment between invocation and response.

It remains to express that the object respects its specification as given by
transition function f. For this purpose, we define the operation history h' of
h to be the sequence of subsequent operations of history h; this sequence is
obtained by first removing from h all pairs (¢, u) with communications u, and
then removing the port components. An operation history A’ with elements
(u;, wy, ;) where i ranges over 0 < ¢ < m, is defined to be legal iff f(w;—1,u;) =
(w;, r;) for all i, where w_; = vy by convention.

A history h is defined to be legal iff its operation history h’ is legal. An
execution e is defined to be legal iff there exists a well-formed legal history h
that fits it. A concurrent data object is defined to be atomic iff it is guaranteed
that every occurring execution of it is legal.

Example. Assume each of the ports qg, g1, g2, g3 submits one invocation. The
invocation of ¢ is treated before the invocation of ¢g, but only gg receives the re-
sponse. The execution e has the form: (qo,uo), (g1, u1), (q2,u2), (g3,us3), (g0, 71)-
The history h can have the form: (go,uo), (g1,u1), (g1, (u1,wo,70)), (g2, us2),
(qo, (uo,w1,71)), (g3,u3), (go,71). The corresponding operation history A’ is
(u1,wg, o), (ug, wr,r1). The histories h and k' are legal iff f(vg,u1) = (wo, 7o)
and f(wo, uo) = (w1,71). The local history hg, of port ¢i is u1, (u1,wo,ro).

Summarizing, the object is atomic iff all its executions are legal. An execu-
tion is legal iff it can be merged with a legal operation history, decorated with
port names, to a well-formed history.

The definition of atomicity in [20] uses serialization points instead of pairs
(¢,z) where z is an operation, as above. It is equivalent to the present one
since the values of ¢ and z can be reconstructed from the other information.
The definitions of linearizability in [12, 13] differ in other aspects, but are also
equivalent.

Remark. An execution is called sequential iff it is well-formed and every in-
vocation in it is immediately followed by the corresponding response, possibly
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except for the very last invocation. A concurrent object is called sequentially
correct iff every sequential execution of it is legal. Sequential correctness is much
weaker than atomicity, but it is also useful. An object that is merely sequentially
correct, can be used by concurrent processes under mutual exclusion.

2.2 Atomic read-write objects

We now restrict our attention to a read-write variable type for values of type
V. For such a type, we have only write commands and read commands. We
model the write command v := z by means of an invocation (Write, z) with
the response Ack. We model a read command of the value v by means of an
invocation Read answered by v. We now have that the set Inv of invocations
is the disjoint union ({Write} x V') U {Read} and the set Res of responses is
{Ack} UV. The transitions are specified by function f with f(v, (Write, z)) =
(z, Ack) and f(v, Read) = (v, v).

We turn to the question of proving atomicity for a concurrent read-write ob-
ject, i.e., a concurrent object of a read-write variable type. In view of our pref-
erence for the assertional approach, we aim at a criterion in terms of states and
invariants. Since the state often holds not enough information, we extend the
state with additional variables that play no role in the algorithm but only serve
in the proof. Such variables are called ghost variables [6], auxiliary variables [21]
or history variables [1]. We prefer the first term, since “auxiliary” often has a
general connotation and “history” suggests a specific role. Since ghost variables
are conceptual only, arbitrary atomic commands can be extended with actions
on ghost variables without danger to the atomicity.

We regard a port as a process or thread that executes the operations it
participates in. The invocation of an operation takes place when the port starts
the execution. The response coincides with the termination of the operation.
The ports communicate via shared variables. They may also have some private
variables. We use the general convention that shared variables are in type writer
font and private variables are slanted. In predicates over the total state, we write
x.p for the value of private variable = of port p. Like ordinary variables, ghost
variables can be shared or private.

We now give an assertional criterion for atomicity of a concurrent read-write
object. The idea is to prove the atomicity (or linearizability) of the object by
extending its implementation with actions on ghost variables in such a way that
the order of the operations is sufficiently determined.

Setting. In order to prove atomicity, we provide every port with private integer
ghost variables start and sqn (sequence number). We use masq to denote the
maximal number sqn of the completed operations. More precisely, masq is a
shared ghost variable with an arbitrary initial value tg. Every port updates
masq at the end of every operation by

masq := max(sqn,masq) .

In every operation of a port, it updates its private variables start and sqn
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precisely once as described now. Every operation of a port starts by copying
the current value of masq to start.

We assume that during every write operation, before the actual writing, the
writing port determines some number for sqn and attaches this number as a kind
of time stamp to the value to be written. In order to express that writers always
choose different numbers for sqn, we introduce a shared ghost variable snlist of
the type list of integers with snlist = [to] initially. Whenever a writer chooses
a number for sqn, it appends this number to snlist. The freedom of writers
in their choices of sqn will only be limited by the conditions in Theorem CRIT
below.

Every port that copies a value, also copies the number attached. When a
reading port interprets a value as the value read, it copies the attached number
to its private variable sqn. The initial value vy of the implemented object
is tagged with the initial number ty. Since the connection between values and
attached numbers is preserved by copying, we have that, when a port encounters
a value (z,t), then (x,t) = (vg, to) or there is a writer that has written (z,t).

Theorem CRIT. Assume that every write action of a port p has the postcondi-
tion start.p < sqn.p and that every read action of a port p has the postcondition
start.p < sqn.p. Assume that snlist always remains without multiple occur-
rences. Then the object is atomic.

Proof. An object is atomic iff all its executions are legal. We therefore consider
an arbitrary execution of the object, i.e., a sequence of invocations and responses
resulting from the actions of a number of ports on the object. We have to prove
that this execution is legal. The execution is well-formed since each port can
execute at most one operation at a time: it needs to wait for a response before
it can invoke again.

In order to prove that the execution is legal, we have to form a fitting legal
history. We shall use the order of the numbers masq and sqn for this purpose. We
first tag all communications with a number. Every invocation is tagged with the
value of masq that is assigned to start at the moment of the invocation. Every
response is tagged with the value of masq written at the end of the operation.
Since masq is incremented only, the tags are ascending (i.e., non-decreasing)
along the execution.

We now have to determine the operations and to form a fitting history by
placing the operations in the execution. We first determine which operations
to add, and tag these operations for adequate positioning later on. For every
writing invocation, we add an operation to the history, even if the execution
does not contain the corresponding response. For a reading invocation we only
add an operation to the history when the execution contains the response.

For every writing invocation v = (Write,x) of a port ¢, we introduce an
operation w = (u, z, Ack) and we tag the pair (¢, w) with the number sqn chosen
by writer q. For every reading response v with attached number ¢, say by port
g, we introduce the operation w = (Read, v,v) and we tag the pair (¢,w) with
the tag t. This determines the operations that have to be added to get a history.
It remains to determine the order.
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We first insert all reading operations into the execution in such a way that
the attached numbers remain ascending and that every reading operation is
placed between the corresponding invocation and response. This is possible
because of the assumption start.p < sqn.p and the final updates of masq.

We then insert all writing operations, in such a way that the attached time
stamps remain ascending and that every write operation precedes all other
operations tagged with the same number. This is possible since snlist never
has multiple occurrences and, hence, different write operations have different
tags. Since a writer always chooses sqn > start, the operation comes after
the invocation. It comes before the response because of the final update of
masq. This implies that the resulting history is well-formed. The history fits
the execution by construction.

The resulting history is legal because of the assumption that, whenever a
reader reads (z,t), then (z,t) = (vg,to) or there is a writer that has written
(z,t). In the first case, the read operation takes place before all write operations
of the history. In the second case, the latest write operation of the history has
written (z,t). This concludes the proof of the theorem.

Remarks. A verifier who wants to apply Theorem CRIT to a given algorithm,
has only to invent a prescription for the writers’ choice of sqn and then to verify
the three assumptions of the theorem. When the verifier is also the designer
of the algorithm, he or she can use the assumptions of the theorem as guiding
principles for the design.

The atomicity criterion Lemma 13.16 of [20] generates more complicated
proof obligations than Theorem CRIT. It is also more general in the sense that
it can be used to prove Theorem CRIT, but we do not describe that proof since
it is more difficult than proving Theorem CRIT from scratch.

If writing occurs in the last atomic action of the write operation, masq is
always the highest number that can be read by a reader. In that case, masq
need not be updated in the final actions of readers. Below, this applies to
Bloom’s algorithm but not to the algorithm of Vitanyi and Awerbuch.

The proof of atomicity of the handshake register of Tromp [23] in [15] and
the snapshot algorithm of [20] 13.4.5 can also be cast in the present setting.

It is not hard to prove that the type integer of the ghost variables start,
sqn, and masq can be replaced by an arbitrary type with a linear order. In
particular, one may use reals or lexically ordered strings.

3 Verification of Bloom’s algorithm

In this Section, Theorem CRIT is used to prove atomicity of Bloom’s register, cf.
[3]. The problem solved by Bloom’s algorithm is to construct, i.e., to simulate,
an atomic register that can be modified by two writers and can be read by n
readers, given two atomic registers that can be modified by one writer and can
be read by n + 1 readers.

Bloom solves this problem as follows. The two writing ports, called writers,
are numbered 0 and 1. Each writer (say ¢) has its own one-writer atomic register
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Reg[q], which has one bit more than the register to be simulated. This additional
bit (d) is used to indicate which of the two registers contains the current value
(v) of the simulated register. We use vw for the value to be written and a
private variable vr for the value to be read. We use the name self for the acting
process. All ports have some additional private variables (e.g. d, ). We use the
operator @ to denote addition modulo 2. The writers and readers are given by
the following code.

Write (vw) :
read (d,z) from Reg[l — self]
write (d @ self, vw) to Reg[sell]
return Ack.

Read :
read (dp,z¢) from Reg[0]
read (di, 1) from Reg]l]
read (d, vr) from Reg[dy @ d]
return vr.

The commands Write and Read are clearly wait-free since the code contains
no loops or blocking commands. Note that when a port reads a pair from a
register, it always uses only one component and ignores the other component of
the pair.

The expression d @ self in the writers’ code is explained as follows. Since
d®(d®q) = (d®d)PDq = g, we have that, if the processes do not interfere, writer
q establishes the postcondition ¢ = dy & dy where dg, d; are the additional bits
of the two registers. The readers use this property to determine which register
to read. This shows that the object is at least sequentially correct. Note that
the initial values of the additional bits are irrelevant for this.

If the processes do interfere, however, correctness is far from obvious. We
proceed with the analysis in the following way. In 3.1, we transform the program
to our notation, make some initial observations and establish the first invariant.
In 3.2, we turn to the application of our atomicity criterion. We introduce ghost
variables in the program and express the proof obligations in three invariants.
Preservation of these invariants is proved by means of some auxiliary invariants

in 3.3.

3.1 Initial transformation

For the ease of notation, the registers Reg are split in registers dir for the tag
bits, and registers val for the values, according to the declarations

val : array bit of value ,
dir : array bit of bit ,

where bit = {0, 1}.
As is well known, actions on private variables can be combined atomically
with actions on shared variables, cf. [2] Theorem 6.26. Since we want to verify
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the invariants mechanically, we introduce explicit program locations. The loca-
tions are numbered from 20 or 30 for easy finding in the code for the theorem
prover. Each number stands for one atomic instruction. For the ease of the
verification, we combine atomic commands whenever possible.

We need one private variable loc for both writers and readers. We thus
represent Bloom’s code as follows.

Write (vw) :
20 loc:= dir[l — self] @ self ;
21 vallself] := vw;
dir[self] := loc ;
22 goto 20 .

In action 20, the writer determines the value of the additional bit loc that
stands for the expression d @ self in Bloom’s code. Action 21 represents the
write action to Reg[self] and is therefore regarded as a single atomic command.
The final command is chosen to model that a writing port can write again.
Note that, when it does so, it may use a fresh value vw to write. In our
NQTHM modelling, vw is updated nondeterministically with the first component
of oracle, see section 1.5.

In order to show that the order of the first two read actions of the readers
is irrelevant, we give each reader a private variable pr to indicate where to read
first. The value of pr is chosen nondeterministically, again by means of oracle.

Read :

30 loc := dir[l — pr] ;
31 loc := loc @ dir[pr] ;

32 vr:= vallloc] ;
33 choose pr in {0,1} ;
goto 30 .

In order to give some feeling for the protocol, we start with a bottom-up
analysis. Recall that the value of a private variable = of process ¢ is denoted
z.q. In particular, pc.q is the program location of process gq.

We first investigate what is read by a reader that performs the actions 30,
31, 32, when no writer has an interleaving action 21. In that case, the reader
reads the value at index loc = dir[0] @ dir[1]. Anthropomorphically speaking,
such a fast reader acts as if dir[0] @ dir[l] is the latest writer of the register.
We therefore define the state function LaWr by

LaWr = dir[0] & dir[1] .

When a writer ¢ = LaWr executes action 20, it establishes pc.g = 21 and loc.q =
dir[l —gq] @ LaWr = dir[g]. It turns out that this property is an invariant of the
system:

(Bloom) ¢=1LlaWr A pcq=21 = locq=dir[q.
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This is shown as follows. Apart from action 20 by ¢ itself (as treated just now),
the only threat to predicate (Bloom) is when a port p # ¢ executes 21 and
thus modifies LaWr. It modifies LaWr only if loc.p # dir[p]. Predicate (Bloom)
therefore implies that p # LaWr initially. Since p modifies LaWr, it becomes
itself equal to LaWr and then has pc.p = 22. This shows that, indeed, (Bloom)
is preserved.

Remark. It is not true that, conversely, ¢ # LaWr and pc.q = 21 implies loc.q #
dir[q]. In fact, if ¢ = LaWr and pc.g = 21, the other writer may modify LaWr,
but it cannot modify loc.q or dir[q].

3.2 The main analysis

We turn to the proof of the protocol. In view of Theorem CRIT, we give every
port a private ghost variable sqn to hold a number. We introduce a shared ghost
variable time and we let the sequence number of a writer be obtained by the
action

time ++; sqn:= time ;
snlist := sqn: snlist .

Here, we use the operator ++ for incrementation and : for adding an element to
a list. In the concluding write action 21, the sequence number is tagged as a
time stamp to the value written. For this purpose, we introduce a shared ghost
variable tag for the time stamps, according to the declaration

tag: array bit of integer .
We then extend action 21 with

tag[self] := sqn ;
masq := max(sqn,masq) .

We use the analysis of Section 3.1 to decide at which moment a writer gets its
sequence number. If writer LaWr executes 20 and the other writer then modifies
LaWr by executing 21, we must justify the behaviour of fast readers by giving
the second writer a later sequence number than the first one. We therefore give
a writer its new sequence number at action 20 if it then equals LaWr. Otherwise,
the sequence number is obtained in action 21. The question whether the writer
equals LaWr can be encoded by the test loc = dir[self] after the assignment to
loc in 20. We thus get the following extended code for the writers.

Write (vw) :
20 start := masq ;
loc := dir[l — self] ® self ;
if loc =dir[self] then
time ++; sqn:= time ;
snlist := sqn:snlist fi;
21 if loc # dir[self] then
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time ++; sqn:= time ;

snlist := sqn:snlist fi;
vallself] := vw;
dir[self] := loc;

tag[self] := sqn ;
masq := max(sqn, masq) ;
22 goto 20 .

Since loc.q and dir[g] are modified only by writer ¢ itself, every write action
obtains precisely one sequence number. Note the update of the ghost variable
masq according to the setting of Theorem CRIT.

When a reader starts reading, its private ghost variable start becomes a copy
of masq. When the reader executes 32, the private ghost variable sqn records
the time stamp of the value that is read. The program for the readers therefore
becomes

Read :

30 start := masq ;
loc:= dir[l — p1] ;

31 loc:= loc® dir[pr] ;

32 vr:= val[loc]; sqn:= tag[loc] ;
masq := max(sqn, masq) ;

33 choose prin {0,1}; goto 30.

At this point one easily verifies the setting of Theorem CRIT. In particular,
whenever a reader reads a pair (z,¢) in instruction 32, there has been a writer
that wrote the same pair in instruction 21. This follows from the atomicity of
the instructions 21 and 32 and the observation that the arrays val and tag are
modified only in 21.

Remark. This atomicity might have been more apparent when we had repre-
sented the pair of arrays val, tag by an array of pairs. The present set-up was
chosen since tag is a ghost variable whereas val is an actual variable.

According to Theorem CRIT, it now suffices to prove the invariants

(Iq0) pc.q =22 = start.q < sqn.q,
(Iq1) pc.q =33 = start.q < sqn.q,
(Ig2) IsSet (snlist) ,

where predicate IsSet determines whether its argument is a list without multiple
occurrences.

3.3 The verification

In this subsection we prove that the predicates (Iq0), (Iql), (Ig2) are invariants
of the system. This requires the invention of a number of other invariants. We
can assume that all invariants hold as a precondition for each atomic step and
then have to prove that they hold in the postcondition. Often this requires
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detailed case distinctions. The proof given below matches the formal proof [16]
that has been verified with the theorem prover NQTHM. One may notice that,
for a theorem prover, boring trivialities and subtle case distinctions are not far
apart.

The method used is as follows. We start with the invariants postulated, here
(I0), (Iql), and (Ig2). For each invariant, we then verify whether each of the
atomic commands preserves it. When some atomic command may falsify it, we
postulate some auxiliary invariants to hold in the precondition of that atomic
command that prevent this falsification. These auxiliary invariants should be
as weak as possible. Indeed, they must hold initially, and we have to maximize
the likelyhood that they in turn are preserved by all atomic actions. When the
resulting list contains an invariant that is implied by other invariants, such an
invariant can be removed from the list.

In this way, the invariants appear in an unsystematic order. For example,
looking ahead, one can see invariants (Jq3) and (Jq6), which can be combined
to

q€{0,1} = tag[q] <sqn.q < time.

We separate such invariants since we need them at different points and since
the proof of invariance is easier when they are separated.

A predicate P is said to be threatened by a command A iff it is not true that
A started with precondition P always has postcondition P. If P is a predicate
threatened by a command A, we need more information than P alone to prove
its invariance, i.e., we have to postulate some other invariant ) such that A
started with precondition P A @ always has postcondition P.

Since pc, start, and sqn are private variables, predicate (Iq0) is threatened
only when a writing port ¢ executes 21. If it does so, it preserves (Iq0) if and
only if we also have the invariants

(Jq0) pcq=21 A locq=dirlq] = start.q < sqn.gq,
(Kq0) pc.q=21 A locq#dir[q = start.q < time .

We first note that (Kq0) is implied by postulating the slightly stronger invariants

(Jal) pe.q € {21,31,32} = start.q < masq ;
(Jq2) masq < time .

Predicate (Jq0) is threatened by command 20, but preserved because of (Jq2).
Since start is set to masq in 20 and 30 and masq is incremented only, predicate
(Jql) is an invariant. Predicate (Jq2) is threatened only by 21 and 32. It is
preserved at these points because of the obvious invariants for writers

(Ja3) q€{0,1} = sqn.g<time;
(Ja4) qg€{0,1} = taglq] <masq.

This concludes the proof of invariance of (Iq0).
Since pc, start, and sqn are private variables, predicate (Iql) is threatened
only by action 32. It is preserved by 32 because of the new postulate
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(Jab) pc.q =32 = start.q < tag[loc.q| .

Predicate (Jg5) is threatened by 21 and 31. It is preserved when p executes 21
with loc.p # dir[p] because of (Jql) and (Jq2). It is preserved by p at 21 with
loc.p = dir[p] because of the new postulate

(Jg6) g€ {0,1} = taglq] <sqngq.
Predicate (Jg5) is preserved at 31 because of the new postulate
(Jq7) pc.q =31 = start.q < tag[loc.q ® dir[pr.q]] .

Since taglg] and sqn.q are modified only by writer ¢, predicate (Jq6) is threat-
ened only by action 20. It is preserved because of (Jq2) and (Jg4).

Predicate (Jq7) is threatened only by the actions 21 and 30. Recall that
LaWr = dir[0] @ dir[1]. Preservation of (Jq7) at 30 now follows from the new
invariant

(Ja8) masq = tag[LaWr] ,

which, as a justification of the acronym LaWr, expresses that the time stamp of
LaWr is the highest time stamp.

Preservation of (Jq7) when writer p executes 21 is complicated, since both
tag and dir can be modified by 21. It is shown as follows. If dir is not modified,
i.e., if loc.p = dir[p], it suffices to use (Jg6). If dir is modified, let Y be the
new value of loc.q®dir[pr.q]. If p =Y, preservation of (Jq7) follows from (Jql1)
and (Jq2). Otherwise, we use the invariant (Bloom) verified in Section 3.1. This
invariant implies that p = 1 — LaWr. Therefore, Y = LaWr and preservation of
(Jq7) follows from (Jql) and (Jqg8).

Predicate (Jg8) is threatened only at 21 and 32. It is preserved at 32 since
(Jg4) implies that masq is not modified in 32. Preservation of (Jq8) when a
writer p executes 21 is shown as follows. If p = LaWr then (Bloom) implies
that loc.p = dir[p]. Therefore LaWr remains p and preservation of (Jq8) follows
from (Jq6). If p # LaWr and loc.p # dir[p], preservation of (Jq8) follows from
(Jq2). In the remaining case, with p # LaWr and loc.p = dir[p|, we use the new
postulate that LaWr is the only writer that can have sqn.q > masq:

(Jq9) g€ {0,1} A masq<sqngqg = ¢=LalWr.

Predicate (Jq9) seems to be threatened by the actions 20 and 21. If p executes 20
and increments sqn.p, it becomes LaWr, so that (Jq9) is preserved. If g executes
21, it sets masq > sqn.q. Finally, if p # ¢ executes 21, it preserves (Jq9) because
of (Jq3) applied to ¢. This concludes the proof of invariance of (Iql).

The invariance of (Iq2) easily follows from the obvious invariant

(Jq10) z € snlist = z <time.

It remains to initialize the variables such that all invariants hold. For the
ghost variables time and masq, we take the initial values ¢ty = 1. For the two
writers, ¢, we specify initially pc.g = 20 and taglg] = squn.q = to. For the
readers, it suffices to specify that pc = 30 initially.
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Remark. The initialization of sqn.q of the writers is needed because the in-
variants (Jq3), (Jg6), and (Jq9) are stronger than necessary. A stricter analysis
shows that these inequalities are needed only when pc.q = 21 and loc.q = dir]g].

The above proof uses implicitly that 0 and 1 are the only writing ports.
The mechanical proof makes this explicit by requiring the obvious additional
invariant

peq € {20,21,22} = qe{0,1}.

The mechanical proof also needs the type invariants that loc and pr are bits.

The mechanical proof bloom in [16] is an NQTHM events file, cf. [4, 5]. The
method employed is the same as used in [14, 15]. The file bloom is the input to
the theorem prover. It consists of around 1250 lines. After a call of the prelude
for concurrency that was mentioned in section 1.5, the first part of this file (340
lines) contains the program and the analysis of how the variables are modified
in the atomic steps. The proofs of the individual invariants require 630 lines.
The remainder is taken by the proof that the individual invariants combine
to one global invariant (140 lines) and the proof that the global invariant can
be initialized (140 lines). This remainder is an administrative check of global
consistency.

4 The Vitanyi-Awerbuch algorithm

In this section, we use how Theorem CRIT can be used to prove the atomicity
of the algorithm of Vitanyi and Awerbuch [24], see also [20], Section 13.4.5.

This algorithm is an implementation of a read-write atomic object with m
ports that can both read and write. It uses m? registers, each for a single writer
and a single reader. It is based on the declarations

type
Port=10..m—1];
Reg = record
val : Value ;
tag : Integer ;
end ;
var x : array Port, Port of Reg ;

Register x[p, q] is a variable that can be read only by port p and written only
by port g. All registers are initially equal to (vo, tg) where v is the initial value
of the abstract object and t( is some initial number.

In this algorithm, the fields tag are actual variables that must be able to
hold arbitrary large integers. These fields serve to hold the tags used in our
atomicity criterion. The algorithm also uses private variables that play the
roles of the ghost variables sqn of the atomicity criterion. These variables are
therefore named sqn here.
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The algorithm works as follows. A writing port that has to write a value vw,
first reads all tags that it can read and then chooses a number sqn bigger than
all of them. To ensure that different writers always choose different numbers,
the writer keeps sqn mod m equal to its process identifier self. It subsequently
writes the pair (vw, sqn) to all available registers. These design decisions could
have been inspired directly by Theorem CRIT. Though Vitanyi and Awerbuch

clearly did not need it, this is the guidance to the designer that we suggested in
the introduction.
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Write (vw) :
num =0 ;
for all j in Port do
num := max(num, x[self, j].tag) od ;
sqn := (num div m + 1)« m + self ;
for all ¢ in Port do
x[i,self] :== (vw,sqn) od ;
return Ack .

A reader reads the record with the highest number and also transfers that
record to all its writing registers. At this point, we cannot see this, but the
latter activity is needed so that the writing ports can obtain a good estimate of
the ghost variable masq of the atomicity criterion.

Read :
num =0 ;
for all j in Port do
if num < x[self, j].tag then
dat := x[self, j] ;
num := dat.tag fi od ;
for all 7 in Port do
x[i, self] .= dat od ;
return dat.val .

These implementations of Write and Read contains no blocking commands or
unbounded repetitions. They have a time complexity of order m, the number
of ports. Therefore, both writing and reading are wait-free.

As before, one easily verifies the setting of Theorem CRIT. In particular,
whenever a reader reads a pair (v,t) in its first for loop, it was the initial value
(vo,tp) or there has been a writer that wrote the pair (v,t) in its second for
loop.

4.1 Initial transformation

We turn to the verification of the assumptions of Theorem CRIT. For conve-
nience, we represent the array x of pairs by a pair of arrays val and tag in the
obvious way. So, now, array tag is an actual variable, not a ghost variable as
in Section 3. Yet, its elements will figure as the tags of the atomicity criterion.
The private variables sqn of the writing ports are also actual variables. Since
we need invariants during the for loops, we introduce a private variable lis for
the set of port numbers that yet have to be treated in the loop.



Write (vw) :
20 start :=masq; num:=0; lis:= Port
21 if IsEmpty(lis) then goto 22 else
choose j€lis; lis:=1lis\ {j};
num := max(num, tag[self, j]) ;
goto 21 fi ;
22 sqn := (num div m + 1) xm + self; lis := Port ;
23 if IsEmpty(lis) then goto 24 else
choose i€ lis; lis:=lis\ {i} ;
valli,self] := vw ;
tagi, self] := sqn ;
goto 23 fi ;
24 snlist := sqn: snlist ;
masq := max(sqn,masq) ;
goto 20 or 30 .

The final goto is chosen to model that, after writing or reading, a port may
decide to write or read again. In our NQTHM modelling, the choice between 20
and 30 is determined by the oracle as explained in 1.5. We could have done the
same for the choices of j and i from Iis, but we did not regard that as worth
the effort. Indeed, looking at the proof below, one easily sees that the order of
treating the elements of lis is irrelevant. For the sake of symmetry, the value dat
determined by the reader is represented by the pair of private variables (vr, sqn).

Read :
30 start == masq; num:=0; lis:= Port ;
31 if IsEmpty(lis) then goto 32 else
choose j € lis; lis:=lis\ {j} ;
if num < tag]self, j] then
vr := vallself, j] ;
num := tag[self,j] fi;
goto 31 fi ;
32 lis := Port ; sqn:= num ;
33 if IsEmpty(lis) then goto 34 else
choose i€ lis; lis:=lis\ {i} ;

valli, self] := vr;
tagli, self] := sqn ;
goto 33 fi ;

34 masq := max(sqn,masq) ;

goto 20 or 30 .

It is easy to see that we have followed the prescriptions of Theorem CRIT with
respect to the assignments to start, sqn, masq, and snlist.
According to Theorem CRIT, it now suffices to prove the invariants

(Lq0) pe.g € {23,24} = start.q < sqn.q ;

(Lql) pc.q =33 = start.q < sqn.q
(Lq2) IsSet (snlist) .
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We strengthened (Lq0) by including location 24 for the sake of later convenience.

4.2 Verification

We use the same method as for Bloom’s algorithm to verify preservation of the
invariants.

In view of the commands 22 and 32, preservation of (Lq0) and (Lql) follows
when we also have the invariant

(Mq0) peq € {22,32} = start.g < num.q .

In order to prove preservation of (Mq0) when ¢ executes 21 or 31, we need an
invariant that incorporates the tags that are yet to be encountered in that loop.
Indeed, preservation of (Mq0) follows from the new invariant

(Mq1) pe.g € {21,31} = start.q < max (num.q, (MAX j € lis.q :: taglq,j])) -

It is easy to see that (Mql) is preserved by the commands 21 and 31: it is a
kind of loop invariant. Predicate (Mql) is threatened by the modifications of
start, num, lis in 20 and 30 and by the modifications of tag in 23 and 33. It is
preserved by the former when we postulate the invariant

(Mqg2) masq < (MAX j € Port :: tag|q,j]) -

It is preserved by the latter when the modifications of tag are always incremen-
tations, as will follow from the invariant

(Nq0) pc.q €4{23,33} A i€lisq = tagli,q <sqn.gq.
This predicate follows from (Lq0) and (Lql) when we postulate the invariant
(Mg3) peqg € {23,33} A i€lisq = tagli,q] < start.q .

Since tag]i, ¢] is modified only by port ¢, preservation of (Mq3) follows from the
invariant

(Ma4) peq € {21,22,31,32} = tagli,q] < start.q .
Preservation of (Mq4) follows from the invariant

(Mqgb) pc.q € {20,30} = tag[i,q] < masq .

Preservation of (Mq5) in its turn follows from the invariant
(Mg6) peq € {24,34} = tagli,q] = sqn.q .

Finally, preservation of (Mq6) follows from the obvious invariant

(Mq7) peqg € {23,33} A iélisq = tagli,q] =sqnq.



It remains to prove preservation of (Mq2). This predicate is threatened by
the assignments to masq and tag. It is preserved when port p executes 24 or 34
since sqn.p = tag[q, p] holds by (Mq6). It is preserved by assignments to tag
because of (Nq0).

We turn to the invariant (Lq2) that expresses the uniqueness of the se-
quence numbers. Here we use that each writing port ¢ only uses sqn with
sqn.q mod m = ¢, as expressed in the obvious invariant

(MgR) pc.q € {23,24} = sqn.g mod m =gq .
In order to prove preservation of (Lq2), it suffices to prove the predicate
(Nql) pc.g=24 = sqn.q ¢ snlist .
In order to prove (Nql), we introduce the set
SN(q) = {x € snlist |z mod m = ¢}
and postulate that start.q is an upper bound of SN(g):
(Mq9) x €8N(q) A peqe€{21,22,23,24} = =z <start.q.
Predicate (Nql) is implied by (Mq8), (Mq9), and (Lq0) as is shown in

pc.gq=24 AN sqn.q € snlist
= {(Ma3)}

pc.g =24 A sqn.g € SN(q)
= {(Mq9)}

pc.q =24 A sqn.q < start.q
= {(Lq0) }

false .

It is here that we use that (Lq0) has been strengthened to cover location 24.

The set SN(g) is modified only when port ¢ itself executes command 24, but
then pc.q becomes 20 or 30. Predicate (Mq9) is therefore threatened only when
port ¢ itself executes 20 and thus gets pc.q = 21. At that point, preservation
of (Mq9) follows from the obvious invariant that masq is an upper bound of
snlist:

(Mql0) =z €snlist = x <masq.

It is easy to see that the invariants can be initialized.

This concludes the verification of the assumptions of Theorem CRIT for the
Vitanyi-Awerbuch algorithm and thus proves that the algorithm implements an
atomic read-write register.

The mechanical proof vitanyi we constructed for this algorithm can be
obtained from [16]. The proofs of the invariants are somewhat easier than in
bloom, but the events file is longer (1482 lines) since it requires arithmetic for
command 22 and a quantification in invariant (Mql). We were able to mechanize
our handwritten proof in less than two days since it was almost flawless and we
had the arithmetic for command 22 available. The one flaw in our handwritten
proof was an insufficient candidate for (Mq10).
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5 Concluding remarks

We presented and proved an assertional criterion for atomicity of read-write
objects (Theorem CRIT). This criterion enabled us to prove the correctness of
Bloom’s algorithm for two writers and of the algorithm of Vitanyi and Awerbuch
for a bounded number of readers and writers. The proofs are simple enough for
straightforward verification with a mechanical theorem prover.

It seems likely that our criterion is strictly weaker than the behavioural
criterion Lemma 13.16 of [20]. We believe, however, that it is strong enough for
every atomic read-write object that is not specifically designed to be hard to
prove.

The proof for Bloom’s algorithm is based on the new (but natural) idea
to order the write operations as perceived by fast readers and to encode this
order by actions on ghost variables. The key to this was the invariant (Bloom),
the only invariant for Bloom’s algorithm that mentions no ghost variables. In
Bloom’s proof [3] the order of writing is not defined by fast readers but by the
actual infinite execution. This may have been the reason for Groote to suggest
in [10] to phrase the proof in terms of prophecy variables (see [1]).

The criterion was even more useful in the case of the algorithm of Vitanyi
and Awerbuch. For, in this case, the sequence numbers could be found as
actual variables of the algorithm. With our system, we always have to invent
the invariants, but in this case that was easy. Conversely, as we have indicated,
our criterion could have suggested the design of this algorithm.

It is a fairly straightforward exercise to apply the criterion to prove atomicity
of the snapshot algorithm of [20] 13.4.5 or of Tromp’s handshake register [15, 23].
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