
l

h

or
Information Processing Letters 88 (2003) 225–229

www.elsevier.com/locate/ip

Salembier’s Min-tree algorithm turned into breadth first searc

Wim H. Hesselink

Department of Mathematics and Computing Science, Rijksuniversiteit Groningen P.O. Box 800,
9700 AV Groningen, The Netherlands

Received 22 May 2003; received in revised form 4 August 2003

Communicated by S. Albers

Keywords: Graph algorithms; Spanning tree; Connected component; Threshold set

1. A graph-theoretic problem We refer to [2–4] for the relevance of Min-trees (
r
s
]

ion
s.

s

ne
the
to
ith

nts
est
the
the
r

their duals, called Max-trees) for image processing.
ents
ed

ts
hat
the
ure
de-

ion

n

erved
Consider a connected undirected graph(V ,E) with
a real-valued functionf defined on the vertices. Fo
realh, let theh-threshold setVh be the set of vertice
x with f (x) � h. The algorithm of Salembier e.a. [4
computes the connected components of all setsVh in a
single computation. Here, we present a simplificat
of the algorithm together with a proof of correctnes

Let us use the termcomponent to indicate a
connected component of someVh. The component
form a tree in the sense thatV itself is the root
and, for every pair of nondisjoint components, o
of the pair contains the other. We determine
tree of components by giving a parent pointer
every node. In every component, a root node w
maximalf -value is chosen. The parent pointer poi
from a nonroot node to the root node of its small
component, from a root node to the root node of
unique smallest enclosing component, and from
root node ofV to ⊥. Following [4], such a pointe
structure is called a Min-tree.

E-mail address: wim@cs.rug.nl (W.H. Hesselink).
URL: http://www.cs.rug.nl/~wim.

0020-0190/$ – see front matter 2003 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2003.08.003
Our use of parent pointers to characterize compon
was inspired by Tarjan’s union-find algorithm [5], us
in a similar way in [1].

The algorithm of Salembier et al. [4] construc
a Min-tree by means of a recursive procedure t
contains three nested loops with recursive calls in
innermost loop. We replace this recursive proced
by a single repetition, by turning the procedure insi
out upon a suggestion of J.E. Jonker.

The parent pointers are collected in a funct
par :V → V ∪ {⊥}. By convention f (⊥) = ∞.
Functionpar is calledascending iff

(Asc) f (x) � f
(
par[x]) for all x ∈ V .

Givenpar, a vertexx is called alevel root iff f (x) <

f (par[x]). The set of descendants of a vertexx is
defined by

D(x) = {
y ∈ V | ∃ n ∈ N: parn[y] = x

}
.

Notice thatx ∈ D(x) sincepar0[x] = x.
We define aMin-tree to be an ascending functio

par such that every component is of the formD(x)

for some level rootx. If par is a Min-tree, function

.



226 W.H. Hesselink / Information Processing Letters 88 (2003) 225–229

D represents a bijective correspondence between the
level roots and the components:

-

of
al

ched

ll

of.

root[lev] := xm; wait[lev] := Nhb(xm);
while lev< ∞ do

he
ode
vel
ent
of

ited
st
ot of

s)

ted
Lemma 1. Let par be a Min-tree.

(a) For every level root x , the set D(x) is a compo-
nent.

(b) If x and y are level roots with D(x) = D(y), then
x = y .

Proof. (a) Level rootx is contained in some compo
nentU of the threshold setVf (x). Sincepar is a Min-
tree,U = D(y) for some level rooty. It follows that
y = parn[x] for some natural numbern. If n � 1, then
f (x) < f (y) sincex is a level root andpar is ascend-
ing. Sincey ∈ U ⊆ Vf (x), it follows that n = 0, and
hencex = y andD(x) = U . (b) This is proved in the
same way. ✷
2. The Min-tree constructed

We write Nhb(x) to denote the set of neighbors
a nodex. The algorithm uses the following addition
variables

W,T : set of Node;

wait: array R of set of Node;

root: array R of Node ∪ {⊥}.
W stands for the set of nodes that have been rea
by the algorithm.T holds level roots. The setwait[h]
holds neighbors of nodes of levelh that have yet to
be investigated. Variableroot[h] is used to hold a
level root at levelh. Initially, all sets are empty and a
elements ofpar androot are⊥ :

W = T = ∅ ∧ (∀ h ∈ R: wait[h] = ∅),
(∀ x ∈ V : par[x] = ⊥) ∧ (∀ h ∈ R: root[h] = ⊥).

Here, and henceforth, the symbol∧ stands for con-
junction (logical and). The variableT can be elimi-
nated from the algorithm, but will be used in the pro

The algorithm starts at an arbitrary nodexm at an
arbitrary levellev.

Alg:

choose xm ∈ V ;
lev := f (xm); W := {xm};
if wait[lev] �= ∅ then Encounter
else Upward end

end.

The commandsEncounter andUpward are defined as
follows.

Encounter:

remove some nd from wait[lev];
if nd /∈ W then

W := W ∪ {nd};
if root[f (nd)] = ⊥ then root[f (nd)] := nd;
else par[nd] := root[f (nd)] end;
wait[f (nd)] := wait[f (nd)] ∪ Nhb(nd);
if f (nd) < lev then lev := f (nd) end;

end.

The value oflev never increases inEncounter, but
always increases in

Upward:

determine minimal m > lev
with root[m] �= ⊥ ∨ m = ∞;

par[root[lev]] := root[m];
T := T ∪ {root[lev]};
root[lev] := ⊥;
lev := m.

The symbol∨, used in the first line ofUpward, stands
for disjunction (logical or).

Informally speaking, the algorithm traverses t
graph and chooses in every new level the first n
it encounters as a root. The other nodes of that le
get a parent pointer to the root. Once a compon
is reached, the algorithm is restricted to neighbors
nodes of the component until the component is vis
completely. At that point, the root of the smalle
enclosing component has been chosen, and the ro
the component gets a parent pointer to that root.

Writing #S for the cardinality (number of element
of a set S, the time complexity is linear in #E +
#V , provided the first line ofUpward can be done
in constant time. The complication here is inheri
from [4].

The algorithm uses setswait[h] rather than lists
or queues, but that is also allowed, since the testnd /∈



W.H. Hesselink / Information Processing Letters 88 (2003) 225–229 227

W guards against multiple treatment and sets can be
emptied in arbitrary order.

t to

ets

in-

e

ts.
nt
d

thm,
rt
h

ents

on

-

n

f

Here, we universally quantify over the free variable
h. Predicate (Iq0) holds initially since initiallyT is

ts to

s

hat
ons

e

on-

d
n-
In applications with large graphs, one may wan
bound the sizes of the setswait[h]. A solution is to
apply double buffering by introducing an array of s
buf and replacing the line

wait[f (nd)] := wait[f (nd)] ∪ Nhb(nd);

by buf[f (nd)] := buf[f (nd)] ∪ {nd}, and to ex-
pand the neighborhood ofnd only whenwait[lev]
needs new elements. Each setbuf[h] only needs the
size #{x | f (x) = h}.

The algorithm of [4] only uses arraybuf, the sets
wait are hidden in the recursion stacks. For M
trees, the algorithm of [4] initializesxm such that
the value off (xm) is maximal. Our version is mor
nondeterministic in the choices ofxm andnd.

3. The proof of correctness

The proof of the algorithm consists of three par
We first prove termination by means of a varia
function and five invariants (Iq0..4). This is followe
by the easy part of functional correctness:par is
ascending and all nodes are reached by the algori
with invariants (Asc) and (Jq0..6). The difficult pa
of the proof consists of invariants (Kq0..2), whic
express how the algorithm traverses the compon
of the graph.

To prove termination, we define the variant functi
vf = vf0 + vf1 + vf2 by

vf0 = (
∑

h ∈ R: #wait[h]),
vf1 = (

∑
x ∈ V \ W : #Nhb(x)),

vf2 = #(V \ T ).

Here, as above, ifS is a set, #S stands for its cardinal
ity.

The repetition terminates, sincevf � 0 and the
loop body decreasesvf. Indeed, under its preconditio
wait[lev] �= ∅, commandEncounter decreasesvf0+
vf1 and does not modifyvf2. CommandUpward does
not modifyvf0 andvf1, and decreasesvf2 because o
the invariant

(Iq0) root[h] /∈ T .
empty. It is preserved under modification ofT because
of the easily verified invariants thatf (root[h]) = h

for everyh with root[h] �= ⊥, and thatroot[lev] �=
⊥ wheneverlev< ∞, as expressed in

(Iq1) root[h] �= ⊥ ⇒ f (root[h]) = h,

(Iq2) lev< ∞ ⇒ root[lev] �= ⊥.

Predicate (Iq0) is preserved under the assignmen
root because of

(Iq3) T ⊆ W .

Invariance of (Iq3) follows from (Iq2) and the obviou
invariant

(Iq4) root[h] ∈ W ∪ {⊥}.

This concludes the proof of (Iq0) and thus proves t
the repetition terminates. The number of executi
of the loop body is bounded by the initial value ofvf
which equals #E + #V .

Since f (⊥) = ∞ and initially par[x] = ⊥, it
is easy to verify that (Asc) is an invariant of th
algorithm: functionpar is invariantly ascending. It is
easy to verify thatroot satisfies the two invariants

(Jq0) h < lev ⇒ root[h] = ⊥,

(Jq1) root[h] = ⊥ ⇒ wait[h] = ∅.

Notice how the last instructions ofEncounter and
Upward preserve (Jq0). In order to prove the postc
dition W = V , we observe the invariants

(Jq2) xm ∈ W ,

(Jq3) x ∈ W ⇒ Nhb(x) ⊆ W ∪ wait[f (x)].

The algorithm terminates withlev = ∞. By (Jq0),
(Jq1), and (Jq3), this yields the postconditionNhb(x)

⊆ W for everyx ∈ W . Since the graph is connecte
andW is nonempty by (Jq2), this implies the postco
dition

(Post0) W = V .



228 W.H. Hesselink / Information Processing Letters 88 (2003) 225–229

With respect topar, we have the easy invariants

der

d

e

0)

t to
-

ts to
ts
tion

x ∈ Nhb(nd) ∧ max(f (nd), f (x)) � h

⇒ (nd, x) ∈ Eh.

f

-

).

-

di-
es:
-

he
ts

tion

e

ve

)

y

(Jq4) x /∈ W ⇒ par[x] = ⊥,

(Jq5) root[h] �= ⊥ ⇒ par[root[h]] = ⊥,

(Jq6) x ∈ T ⇒ f (x) < f (par[x]).

We use (Iq4) to prove preservation of (Jq5) un
Encounter. Notice that (Jq6) says thatT consists of
level roots.

The components of levelh are the connecte
components of the subgraph withVh as set of vertices
andEh = E ∩ (Vh ×Vh) as set of edges. We regardEh

as a symmetric binary relation onV and writeE∗
h for

its transitive closure(Eh)
∗, which is an equivalenc

relation on V . The components at levelh are the
equivalence classes ofE∗

h contained inVh.
In order to relate the components to functionD,

we first relate relationE∗
h to root andwait. For

arbitrary real numbersh, k, and n, we claim the
invariants

(Kq0) root[k] �= ⊥ �= root[n] ∧ max(k, n) � h

⇒ (root[k],root[n]) ∈ E∗
h,

(Kq1) x ∈ wait[k] ∧ max(k, f (x)) � h

⇒ (root[k], x) ∈ E∗
h.

Before proving these invariants, we note that (Kq
and (Kq1) imply that the assignments towait, root
andpar in Encounter have the precondition

PreC: root[k] �= ⊥ ∧ max(k, f (nd)) � h

⇒ (root[k],nd) ∈ E∗
h.

Indeed, sinceroot[k] �= ⊥, we havelev � k by
(Jq0), so that (Kq0) and (Iq2) imply thatE∗

h contains
the pair (root[k],root[lev]). Sincend is taken
from wait[lev], predicate (Kq1) implies thatE∗

h

contains(root[lev],nd). By transitivity, this im-
plies(root[k],nd) ∈ E∗

h, thus provingPreC.
Predicate (Kq0) is threatened by the assignmen

root[f (nd)] in Encounter. By symmetry, we may as
sume thatn = f (nd) androot[n] := nd. Therefore,
(Kq0) is preserved because of preconditionPreC.

Predicate (Kq1) is threatened by the assignmen
root andwait. If root[k] = ⊥, these assignmen
preserve (Kq1) because of (Jq1) and the observa
that
With respect to the assignment towait[k] when
root[k] �= ⊥, consider nd ∈ wait[lev] with
f (nd) = k andx ∈ Nhb(nd) and max(k, f (x)) � h.
Now PreC yields (root[k],nd) ∈ E∗

h and(nd, x) ∈
Eh by the definitions ofEh and Nhb. This implies
(root[k], x) ∈ E∗

h. This concludes the proofs o
(Kq0) and (Kq1).

We turn to the setsD(x) as defined in the introduc
tion. D(x) can only change whenpar is modified. In
the algorithm, every assignmentpar[r] := s has the
preconditionpar[r] = ⊥ because of (Jq4) and (Jq5
It follows thatD(x) can only grow: ify ∈ D(x) holds,
it remains valid.

We now consider a levelh and a connected com
ponentU of the subgraph(Vh,Eh). The aim is to
prove that the algorithm establishesU = D(x) for
somex ∈ T . For this purpose, we introduce a pre
cate (Kq2) which is a disjunction of three alternativ
Alt0 tends to hold initially;Alt2 is the goal of the argu
ment; the intermediate predicateAlt1 asserts thatlev
is below the valueh under consideration, and that t
intersectionU ∩ W is the union of the descendant se
D(root[k]) wherek ranges over the levelsk � h with
root[k] �= ⊥ . For conciseness, we use the conven
thatD(⊥) is empty. Using this, (Kq2) is defined by

(Kq2) Alt0 ∨ Alt1 ∨ Alt2, where

Alt0: U ∩ W = ∅,

Alt1: lev� h ∧ U ∩ W = ⋃
k�h D(root[k]),

Alt2: (∃ x ∈ T : U = D(x)).

Notice that the setsD(root[k]) are disjoint becaus
of (Jq5). Therefore, the union inAlt1 is a disjoint
union.

We prove that (Kq2) is an invariant. We ha
W = {xm} initially. Therefore, if xm /∈ U , then Alt0
holds initially. Otherwise,Alt1 holds initially since,
because ofxm ∈ U , the initial value oflev is � h

andU ∩ W = {xm} = D(xm). This proves that (Kq2
holds initially.

Now assume thatAlt0 holds and a loop bod
falsifiesAlt0. This means thatEncounter finds a node
x0 ∈ U , adds it toW , and establisheslev= f (x0) �
h andU ∩ W = {x0}. The precondition satisfiesx0 ∈



W.H. Hesselink / Information Processing Letters 88 (2003) 225–229 229

wait[lev] androot[lev] ∈ W by (Iq2) and (Iq4).
We have(root[lev], x0) /∈ E∗ sinceroot[lev] /∈

-

OnceAlt2 holds, it remains valid, since (Iq0) and
(Jq5) imply that the setD(x) for x ∈ T never changes.

ve
)

l

re.
d

on
001)

n,
nts,

s
ttern

ted
rans.

on
h

U . By (Kq1), this implies the preconditionh < lev
and henceroot[k] = ⊥ for all k � h by (Jq0).
We therefore have{x0} = ⋃

k�h D(root[k]) in the
postcondition of thisEncounter.

Next, assume thatAlt1 holds and a nodend /∈ W is
encountered. The precondition satisfieslev � h and
nd ∈ wait[lev]. Alt1 and (Iq2) implyroot[lev] ∈
U . Using (Kq1) with x := nd, k := lev, one can
prove thatnd belongs toU if f (nd) � h. Conversely,
nd ∈ U impliesf (nd) � h, sinceU ⊆ Vh. It follows
that nd is added to the setU ∩ W if and only if
f (nd) � h. By the assignment topar or root, node
nd is added toD(root[f (nd)]). This implies that it
is added to

⋃
k�h D(root[k]) if and only if f (nd) �

h. This shows thatAlt1 is preserved.
Next assume thatAlt1 holds andUpward is exe-

cuted withx1 = root[lev] and determined valuem.
If m � h, the value ofroot[lev] is set to⊥, but
the assignment topar adds the elements ofD(x1)

to D(root[m]), so thatAlt1 is preserved. So, as
sume thatm > h. Thenroot[k] = ⊥ for all k with
k < m ∧ k �= lev. ThereforeAlt1 impliesU ∩ W =
D(x1). By (Jq1), we havewait[k] = ∅ for all k < m.
We show that this impliesU ⊆ W . For everyx ∈
U ∩ W and everyy with (x, y) ∈ Eh, we havey ∈ U

andwait[f (x)] = ∅ and hencey ∈ W by (Jq3), so
thaty ∈ U ∩ W . SinceU ∩ W is nonempty andU is a
connected component ofVk, this impliesU ⊆ U ∩ W

and henceU ⊆ W andU = D(x1). SinceUpward adds
x1 to T , this establishesAlt2.
This concludes the proof that (Kq2) is an invariant.
In the postcondition of the algorithm, we ha

lev = ∞ and W = V by (Post0). Therefore (Kq2
yields the postcondition

(Post1) (∃ x ∈ T : U = D(x)).

Sincepar is always ascending andT consists of leve
roots by (Jq6), postcondition (Post1) implies

Theorem 2. Algorithm Alg establishes that par is a
Min-tree.

Actually, the algorithm establishes somewhat mo
As is easy to verify,T is the set of level roots an
par[x] ∈ T ∪ {⊥} for all verticesx.

References

[1] W.H. Hesselink, A. Meijster, C. Bron, Concurrent determinati
of connected components, Sci. Comput. Programm. 41 (2
173–194.

[2] W.H. Hesselink, J.E. Jonker, A. Meijster, M.H.F. Wilkinso
Accumulating attributes over growing connected compone
in preparation.

[3] A. Meijster, M.H.F. Wilkinson, A comparison of algorithm
for connected set openings and closings, IEEE Trans. Pa
Analysis and Machine Intelligence 24 (2002) 484–494.

[4] P. Salembier, A. Oliveras, L. Garrido, Anti-extensive connec
operators for image and sequence processing, IEEE T
Image Process. 7 (1998) 555–570.

[5] R.E. Tarjan, Efficiency of a good but not linear set uni
algorithm, J. ACM 22 (1975) 215–225.


