Available at

&

ELSEVIE

www.ElsevierComputerScience.com

POWERED BY SCIENCE @DIRECT'3

Information Processing Letters 88 (2003) 225-229

Information
Processing
Letters

www.elsevier.com/locatefipl

Salembier’s Min-tree algorithm turned into breadth first search

Wim H. Hesselink

Department of Mathematics and Computing Science, Rijksuniversiteit Groningen P.O. Box 800,
9700 AV Groningen, The Netherlands

Received 22 May 2003; received in revised form 4 August 2003

Communicated by S. Albers

Keywords: Graph algorithms; Spanning tree; Connected component; Threshold set

1. A graph-theoretic problem

Consider a connected undirected graph E) with
a real-valued functiory defined on the vertices. For
realh, let theh-threshold seV;, be the set of vertices
x with f(x) < h. The algorithm of Salembier e.a. [4]
computes the connected components of all Egis a
single computation. Here, we present a simplification
of the algorithm together with a proof of correctness.

Let us use the terntomponent to indicate a
connected component of som&. The components
form a tree in the sense thaf itself is the root
and, for every pair of nondisjoint components, one
of the pair contains the other. We determine the
tree of components by giving a parent pointer to
every node. In every component, a root node with
maximal f-value is chosen. The parent pointer points
from a nonroot node to the root node of its smallest
component, from a root node to the root node of the
unique smallest enclosing component, and from the
root node ofV to L. Following [4], such a pointer
structure is called a Min-tree.

E-mail address: wim@cs.rug.nl (W.H. Hesselink).
URL: http://www.cs.rug.nl/~wim.

We refer to [2—4] for the relevance of Min-trees (or
their duals, called Max-trees) for image processing.
Our use of parent pointers to characterize components
was inspired by Tarjan’s union-find algorithm [5], used
in a similar way in [1].

The algorithm of Salembier et al. [4] constructs
a Min-tree by means of a recursive procedure that
contains three nested loops with recursive calls in the
innermost loop. We replace this recursive procedure
by a single repetition, by turning the procedure inside-
out upon a suggestion of J.E. Jonker.

The parent pointers are collected in a function
par:V — V U {l}. By convention (1) = cc.
Functionpar is calledascending iff

(Asc) f(x)< f(par[x]) forallxeV.

Givenpar , a vertexx is called devel root iff f(x) <
f(par [x]). The set of descendants of a vertexs
defined by

D(x)={yeV|3neN: par"[y]=x}.

Notice thatr € D(x) sincepar °[x] = x.

We define aMin-tree to be an ascending function
par such that every component is of the for(x)
for some level root. If par is a Min-tree, function

0020-0190/$ — see front mattér 2003 Elsevier B.V. All rights reserved.

doi:10.1016/).ipl.2003.08.003

226

WH. Hesselink / Information Processing Letters 88 (2003) 225-229

D represents a bijective correspondence between ther oot [l ev]:=xm wai t [| ev]:=Nhb(xm);

level roots and the components:
Lemma 1. Let par bea Min-tree.

(a) For every level root x, the set D(x) is a compo-
nent.

(b) If x and y arelevel rootswith D(x) = D(y), then
X =Y.

Proof. (a) Level rootx is contained in some compo-
nentU of the threshold se¥ ¢ (). Sincepar is a Min-
tree,U = D(y) for some level rooty. It follows that

y = par "*[x] for some natural number If n > 1, then
f(x) < f(y)sincex is alevel root angbar is ascend-
ing. Sincey e U C Vy(y), it follows thatn =0, and
hencex =y andD(x) = U. (b) This is proved in the
same way. O

2. TheMin-tree constructed

We write Nhb(x) to denote the set of neighbors of
a nodex. The algorithm uses the following additional
variables

W, T: set of Node;
wai t: array R of set of Node;
r oot : array R of Node U { L }.

while | ev < oo do
if wait[l ev]#¢ then Encounter
else Upward end

end.

The commandg&ncounter andUpward are defined as
follows.

Encounter:

remove some nd fromwai t [| ev];
if nd¢ W then
W := WU {nd};
if root[f(nd)]=_L then root [f(nd)]:=nd;
else par [nd]:=r oot [f(nd)] end;
wai t [f(nd)]:=wai t [f(nd)] UNhb(nd);
if f(nd) <l ev then | ev:= f(nd) end,;
end.

The value ofl ev never increases i&ncounter, but
always increases in

Upward:

determine minimal m > | ev

with root [m] # L vm=o0;
par [r oot [l ev]]:=r oot [m];
T:=TuUf{root[l ev]};
root[lev]:=1;
| ev:=m.

W stands for the set of nodes that have been reached

by the algorithmT holds level roots. The sefi t [4]
holds neighbors of nodes of levelthat have yet to
be investigated. Variableoot [4] is used to hold a
level root at leveh. Initially, all sets are empty and all
elements opar andr oot are.l:

W=T=0ANheR: wait[h]=0),
VxeV:par[x]=1) A VheR: root [h]=1).

Here, and henceforth, the symbelstands for con-
junction (logical and). The variabl& can be elimi-

nated from the algorithm, but will be used in the proof.

The algorithm starts at an arbitrary nodmat an
arbitrary levell ev.

Alg:
choose xme V;

lev:=f(xm; W:={xm;

The symbolv, used in the first line oflpward, stands
for disjunction (logical or).

Informally speaking, the algorithm traverses the
graph and chooses in every new level the first node
it encounters as a root. The other nodes of that level
get a parent pointer to the root. Once a component
is reached, the algorithm is restricted to neighbors of
nodes of the component until the component is visited
completely. At that point, the root of the smallest
enclosing component has been chosen, and the root of
the component gets a parent pointer to that root.

Writing #S for the cardinality (number of elements)
of a setS, the time complexity is linear in B +
#V, provided the first line ofUpward can be done
in constant time. The complication here is inherited
from [4].

The algorithm uses setgai t [/] rather than lists
or queues, but that is also allowed, since the riels

WH. Hesselink / Information Processing Letters 88 (2003) 225-229

227

W guards against multiple treatment and sets can beHere, we universally quantify over the free variable

emptied in arbitrary order.

In applications with large graphs, one may want to
bound the sizes of the setsi t [A#]. A solution is to
apply double buffering by introducing an array of sets
buf and replacing the line

wai t [f(nd)]:=wai t [f(nd)] U Nhb(nd);

by buf [f(nd)] := buf [f(nd)] U {nd}, and to ex-
pand the neighborhood ofd only whenwai t [I ev]
needs new elements. Each beif [#] only needs the
size #x | f(x) =h}.

The algorithm of [4] only uses arradyuf , the sets
wai t are hidden in the recursion stacks. For Min-
trees, the algorithm of [4] initializesm such that
the value of f (xm) is maximal. Our version is more
nondeterministic in the choices sMandnd.

3. The proof of correctness

The proof of the algorithm consists of three parts.
We first prove termination by means of a variant
function and five invariants (1g0..4). This is followed
by the easy part of functional correctnegar is

h. Predicate (Iq0) holds initially since initially" is
empty. It is preserved under modification®because
of the easily verified invariants that(r oot [h]) = h
for everyh withr oot [h] # L, and that oot [| ev] #
1 whenevel ev < oo, as expressed in

(I91)
(192)

root[h]#L = f(root[h]) =h,
lev<oo = root[lev]#Ll.

Predicate (Iq0) is preserved under the assignments to
r oot because of

(Ig3) T Cw.

Invariance of (1g3) follows from (Ig2) and the obvious
invariant

(Ig4) root[hle WU {L}.

This concludes the proof of (Ig0) and thus proves that
the repetition terminates. The number of executions
of the loop body is bounded by the initial value \&f

which equals £ + #V'.
Since f(L) = oo and initially par [x] = L, it

ascending and all nodes are reached by the algorithm,js easy to verify that (Asc) is an invariant of the

with invariants (Asc) and (Jq0..6). The difficult part
of the proof consists of invariants (Kq0..2), which

express how the algorithm traverses the components

of the graph.
To prove termination, we define the variant function
vf = vf0 + vfl + vf2 by

vio = (O heR: #wai t [A]),
Vil = (L xeV\W: #Nhb(x)),
vi2 = #V\T).

Here, as above, if is a set, # stands for its cardinal-
ity.

The repetition terminates, sinog > 0 and the
loop body decreases. Indeed, under its precondition
wai t [| ev] # @, commandEncounter decrease&0 +
vfl and does not modifyf2. CommandJpward does
not modify vf0 andvfl, and decreases2 because of
the invariant

(Ig0) root[h]¢T.

algorithm: functionpar is invariantly ascending. It is
easy to verify that oot satisfies the two invariants

(Jg0) h<lev = root[h]=1,
(Jql) root[h]l=L = wait[h]=0.

Notice how the last instructions dfncounter and
Upward preserve (Jg0). In order to prove the postcon-
dition W = V, we observe the invariants

(Jg2) xme w,
(Jg3) xeW = Nhb(x)SWUwait[f(x)].

The algorithm terminates withev = co. By (Jq0),
(Jg1), and (Jg3), this yields the postconditidib(x)

C W for everyx € W. Since the graph is connected
andW is nonempty by (Jg2), this implies the postcon-
dition

(Post0) w=1V.

228

With respect tgpar , we have the easy invariants

Jg4) x¢W = par[x]=1,
(Jg5) root[h]#A 1 = par[root[hr]]=1,
(Jg6) xeT = f(x) < f(par[x]).

We use (Ig4) to prove preservation of (Jg5) under
Encounter. Notice that (Jg6) says thdt consists of
level roots.

The components of levek are the connected
components of the subgraph wit) as set of vertices
andE, = EN(V, x V) as set of edges. We regaifg
as a symmetric binary relation dn and write E}; for
its transitive closurg Ey)*, which is an equivalence
relation on V. The components at level are the
equivalence classes @f; contained invj,.

In order to relate the components to functifn
we first relate relationE; to r oot andwai t. For
arbitrary real numbers:, k, and n, we claim the
invariants
(KqO) root[k]# L #root [n] A maxk,n) <h

= (root[k],root [n]) € ES,
(Kgl) xewait[k] A maxk, f(x))<h

= (root[k],x) € E}.

Before proving these invariants, we note that (Kq0)
and (Kqgl) imply that the assignmentswai t , r oot
andpar in Encounter have the precondition

PreC: root[k]# L A maxk, f(nd)) <h

= (root[k],nd) € E}.

Indeed, sincer oot [k] # L, we havel ev < k by
(Jg0), so that (Kq0) and (Ig2) imply that contains
the pair (r oot [k],r oot [I ev]). Sincend is taken
from wai t [| ev], predicate (Kgql) implies thakt}
contains(r oot [l ev],nd). By transitivity, this im-
plies(r oot [k], nd) € E};, thus provingPreC.

WH. Hesselink / Information Processing Letters 88 (2003) 225-229

x € Nhb(nd) A max(f(nd), f(x)) <h
= (nd,x) € Ej.

With respect to the assignment t@i t [k] when
root [k] # L, consider nd € wait[l ev] with
f(nd) =k andx € Nhb(nd) and maxk, f(x)) < h.
Now PreC yields (r oot [k], nd) € E}; and(nd, x) €
E, by the definitions ofE;, and Nhb. This implies
(root [k],x) € Ej. This concludes the proofs of
(Kq0) and (Kq1l).

We turn to the set®(x) as defined in the introduc-
tion. D(x) can only change whepar is modified. In
the algorithm, every assignmepar [r] := s has the
preconditionpar [r] = L because of (Jg4) and (Jg5).
It follows that D(x) can only grow: ify € D(x) holds,
it remains valid.

We now consider a level and a connected com-
ponentU of the subgraph(Vy,, E;). The aim is to
prove that the algorithm establishés = D(x) for
somex € T. For this purpose, we introduce a predi-
cate (Kg2) which is a disjunction of three alternatives:
Alt0 tends to hold initiallyAlt2 is the goal of the argu-
ment; the intermediate predicatél asserts thdtev
is below the valué: under consideration, and that the
intersection/ N W is the union of the descendant sets
D(r oot [k]) wherek ranges over the leveks< & with
r oot [k] # L. For conciseness, we use the convention
that D(L) is empty. Using this, (Kg2) is defined by

(Kg2) AIt0 v Altl v Alt2, where

Alt0: UNW =0,
Altl: lev<hAUNW= ngh D(r oot [k]),
Alt2: AxeT: U= D(x)).

Notice that the set®(r oot [k]) are disjoint because
of (Jg5). Therefore, the union ialtl is a disjoint
union.

We prove that (Kg2) is an invariant. We have
W = {xm initially. Therefore, ifxm¢ U, thenAlt0

Predicate (Kq0) is threatened by the assignment to holds initially. Otherwise Altl holds initially since,

r oot [f(nd)] in Encounter. By symmetry, we may as-
sume thak = f(nd) andr oot [n] :=nd. Therefore,
(KqO) is preserved because of preconditizaC.

Predicate (Kql) is threatened by the assignments to

root andwai t. If r oot [k] = L, these assignments

because okme U, the initial value ofl ev is < &
andU N'W = {xm = D(xm. This proves that (Kq2)
holds initially.

Now assume thawlt0 holds and a loop body
falsifies Alt0. This means thaEncounter finds a node

preserve (Kql) because of (Jgql) and the observationxg € U, adds it toW, and establishesev = f(xp) <

that

h andU N W = {xp}. The precondition satisfies

WH. Hesselink / Information Processing Letters 88 (2003) 225-229 229

wai t [I ev] andr oot [| ev] € W by (Ig2) and (1g4).
We have(r oot [l ev], xo) ¢ E; sincer oot [l ev] ¢

U. By (Kql), this implies the preconditioh < | ev

and hencer oot [k] = L for all kK < & by (JqO0).
We therefore havéxp} = ngh D(r oot [k]) in the
postcondition of thig€ncounter.

Next, assume tha<l holds and a noded ¢ W is
encountered. The precondition satisfiesv < 7 and
nd € wai t [lev]. Altl and (1g2) implyr oot [l ev] €
U. Using (Kgl) withx :=nd, k :=1 ev, one can
prove thaind belongstaU if f(nd) < k. Conversely,
nd € U implies f(nd) < &, sinceU C Vj,. It follows
that nd is added to the set/ N W if and only if
f(nd) < h. By the assignment tpar orr oot , node
nd is added taD(r oot [f(nd)]). This implies that it
is added tCngh D(r oot [k]) if and only if f(nd) <
h. This shows thatltl is preserved.

Next assume thaaltl holds andUpwar d is exe-
cuted withx; =r oot [l ev] and determined valua.
If m < h, the value ofr oot [l ev] is set to L, but
the assignment tpar adds the elements ab(x1)
to D(root [m]), so thatAltl is preserved. So, as-
sume thatn > k. Thenr oot [k] = L for all £ with
k<m A k#1 ev. Thereforealtl impliesU N W =
D(x1). By (Jg1), we havewai t [k] = ¢ for all k < m.
We show that this implied/ € W. For everyx €
U N W and everyy with (x, y) € Ej,, we havey e U
andwai t [f(x)] = @ and hencey € W by (Jg3), so
thaty e U N W. SinceU N W is nonempty and’ is a
connected component &, this impliesU CUNW
and hencé/ € W andU = D(x1). SinceUpward adds
x1 to T, this establishealt2.

OnceAlt2 holds, it remains valid, since (Ig0) and
(Jg5) imply that the sab(x) for x € T never changes.
This concludes the proof that (Kg2) is an invariant.

In the postcondition of the algorithm, we have
| ev =00 and W = V by (Post0). Therefore (Kg2)
yields the postcondition

(Postl) @xeT: U=D(®)).

Sincepar is always ascending arfd consists of level
roots by (Jg6), postcondition (Postl) implies

Theorem 2. Algorithm Alg establishes that par isa
Min-tree.

Actually, the algorithm establishes somewhat more.
As is easy to verify,T is the set of level roots and
par [x] € T U{L} for all verticesx.

References

[1] W.H. Hesselink, A. Meijster, C. Bron, Concurrent determination
of connected components, Sci. Comput. Programm. 41 (2001)
173-194.

[2] W.H. Hesselink, J.E. Jonker, A. Meijster, M.H.F. Wilkinson,
Accumulating attributes over growing connected components,
in preparation.

[3] A. Meijster, M.H.F. Wilkinson, A comparison of algorithms
for connected set openings and closings, IEEE Trans. Pattern
Analysis and Machine Intelligence 24 (2002) 484—-494.

[4] P. Salembier, A. Oliveras, L. Garrido, Anti-extensive connected
operators for image and sequence processing, IEEE Trans.
Image Process. 7 (1998) 555-570.

[5] R.E. Tarjan, Efficiency of a good but not linear set union
algorithm, J. ACM 22 (1975) 215-225.

