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Abstract. The algorithm of Jayanti and Petrovic (ICDCS 2005) gives a
wait-free implementation of load-linked/store-conditional (LL/SC) for mul-
tiword variables, given LL/SC actions on single words. The authors gave
a behavioural proof of correctness. We present a refinement proof that has
been verified with the proof assistant PVS. We give an improved algorithm
which needs fewer single-word LL/SC registers and fewer shared multiword
variables, and in which one single-word LL operation has been eliminated.
We also present a pure version in which all accesses to the LL/SC variables
are done by LL, SC, or VL.
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1 Introduction

In [JP05], Jayanti and Petrovic develop an efficient wait-free implementation of
LL/SC of a multiword, given LL/SC for single word variables. Load-Linked and
Store-Conditional (LL/SC) form a pair of instructions that is very useful for the
implementation of lock-free (or non-blocking) concurrent algorithms.

The LL operation for an object O reads the value of O and gives p “a link to
object O”. When a process p calls the SC operation of O while it has a link to O,
it assigns a new value to O, removes all links to O, and returns true. When p calls
SC without a link to O, the call does nothing but returns false. A boolean function
VL indicates that process p has a link to O. We refer to [JP05] for a discussion of
the relevance of LL/SC and the availability of it on modern machines.

Recall that a shared variable for concurrent processes is called safe [Lam86]
if every read operation that does not overlap with any write operation returns the
most recently written value and every write operation that does not overlap with any
other write operation successfully writes; in all remaining cases of concurrent reading
or writing, the value written or delivered must always be a legitimate value of the
domain of the variable. The primary example of a safe variable is a multiword, i.e.,
an array the elements of which can be read or written atomically, while interference
may occur during reading or writing of the entire array.

Given LL/SC/VL for single machine words, the paper [JP05] gives a wait-free
implementation of LL/SC/VL for safe variables of arbitrary size, together with a
proof of correctness.

The proof in [JP05] is a behavioural proof, i.e., based on the analysis of execution
sequences. It appears to be a complete proof, but we were not able, let alone eager,
to follow it, since it requires the reader to consider the values of several variables
during complicated time intervals. We therefore devised a refinement proof of the
algorithm, primarily based on invariants. During the design of the invariants, we
heavily relied on the proof assistant PVS [OSRSC01], to keep track of the proof
obligations, and not to be fooled by wishful thinking.

During this investigation, but after we had completed the first version of the
proof, we obtained two simplifications of the algorithm. Firstly, we eliminated one
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of the implementing LL operations. Secondly, if the word length is big enough, we
reduced the space complexity of the algorithm by a factor 2/3. Fortunately, after
minor modification, our proof also proved the simplification. In this note, we thus
present the simplified algorithm with a refinement proof that has been verified with
PVS.

If N is the number of processes, our version of the algorithm needs a word length
K with N(N +1)(2N +1) ≤ 2K and it requires 2N +2 single-word LL/SC registers
and a shared array of 2N + 1 safe variables. The version of [JP05] needs 6N2 ≤ 2K

and requires 3N + 1 single-word LL/SC registers and a shared array of 3N safe
variables. We present the proof in such a way that it applies to both versions of the
algorithm.

The practical relevance of the algorithm and its improvement is limited. The fact
that it is wait-free rather than lock-free is nice, but must not be over-estimated since
the wait-freedom is lost in most applications of the higher-level LL/SC operations.
If one needs more than one LL/SC variable of the higher level, one must realize
that there are cheaper and more powerful implementations of arrays of lock-free
(non-blocking) multiword variables [DHLM04,GH04]. For example, [GH04] gives a
lock-free implementation of atomic actions on K multiword variables by means of
N + K safe variables and K single word LL/SC variables.

Nevertheless, the algorithm and its proof show a kind of buffer management that
is interesting in itself and may have important other applications.

Overview. In Section 2 we present our improved version of the algorithm of
[JP05]. In Section 3 we give two specifications of LL/SC, one to be used for the
single-word version, and the other for the multiword version. In Section 4, we re-
formulate the code for the ease of formal manipulation. In Section 5, we provide an
overview of the proof and a description of the role of the proof assistant PVS in it.

In Section 6, we establish the main uniqueness invariants needed to preclude
interference. In Section 7, we derive invariants about the values transferred and the
delay of the processes. In Section 8, we determine the synchronization point of the
multiword LL operation, and prove the related invariants. Section 9 contains the
forward simulation from the reformulated algorithm to the second specification of
LL/SC.

In Section 10, we treat a pure variation of the algorithm in which all atomic
accesses are performed with LL, SC, and VL. In Section 11, we draw our mixed
conclusions.

2 The Revised Algorithm of Jayanti and Petrovic

We first present our version of the algorithm in such way that it can easily be
compared with [JP05]. We use the convention that shared variables are in typewriter
font and that private variables are slanted. Outside of the code of process p, we write
v.p to denote the value of the private variable v of p. We use type Item for the type of
the safe variables or multiwords, and give the processes persistent private variables

val, arg : Item ,
result : Bool .

The value read by LL will be stored in val. The variable arg holds the value to be
stored for SC . The boolean result of SC and VL will be kept in result.

Recall that N is the number of processes. Let M be any number with M > N .
The cheapest choice is M = N+1, but by allowing M > N we can get a simultaneous
proof of the original version of [JP05]. The algorithm uses the following three ranges:

Process = 0 . . . N − 1 ,
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Number = 0 . . .M − 1 ,
Index = 0 . . .M + N − 1 .

The algorithm uses the shared variables

xx : Index ×Number × Process ,
buf : array Index of Item ,
bank : array Number of Index ,
help : array Process of Bit × Index .

The algorithm is based on LL/SC of the single words xx and bank[k] and help[p].
To explain the algorithm, we split xx into its components and introduce the shared
variables

xind : Index , xnr : Number , xhpr : Process ,

with the convention that xind, xnr, xhpr are always the three components of xx.
The processes have the private persistent variables:

ind,mybuf : Index ,
nr : Number ,
hpr : Process .

The first idea is that buf[xind] always holds the current value of the object. The
tuple (ind,nr,hpr) serves as a private copy of xx. The index mybuf is a private
candidate for the new value of xind after a successful SC operation.

Since delayed processes may use obsolete values of xind, the value of xind is
not discarded after usage but stored in bank[xnr] (in line 33 below). The bank
thus serves to protect recent history so that delayed processes are served correctly,
though possibly with outdated results.

Array help is used to ensure that only recent history needs to be protected.
A storing process, say p, helps (in line 35 below) process hpr.p if that process is
delayed in reading, by providing it with a pointer to a correct but outdated item.

These three ideas are due to [JP05]. Our main contribution to the design is to
undo the decision of [JP05] that M = 2N and hpr = nr mod N .

The initial values are xx = (0, 0, 0), buf[0] = item0, the initial value of the
multiword, bank[k] = k for all numbers k and mybuf .p = M +p and ind.p = nr.p =
hpr.p = fst(help[p]) = 0 for all processes p.

We now present the algorithm, with the names LLmul, SCmul and VLmul for
the three implemented procedures on a multiword. We use fst and snd to get the first
and second component of a pair. In comparison with [JP05], we shift the numbers
of the locations by 10 or 20 to make them easier to recognize.

proc LLmul(p)
11: help[p] := (1,mybuf )
12: (ind,nr,hpr) := LL(xx)
13: val := buf[ind]
14: (a, b) := LL(help[p]) ; if a = 0 then
15: (ind,nr,hpr) := LL(xx)
16: val := buf[ind]
17: if ¬VL(xx) then
18: val := buf[b] end
19: else SC(help[p], (0, b)) end
20: mybuf := snd(help[p])
21: buf[mybuf ] := (safe) val .
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The lines 21 and 37 below contain nonatomic assignments to safe variables. This is
indicated by the keyword (safe). Reading from a safe variable, as in 13, 16, 18, can
be regarded as atomic, but may yield an arbitrary value when there is an interleaved
write action on this variable.

proc SCmul(p)
32: if LL(bank[nr]) 6= ind ∧VL(xx) then
33: SC(bank[nr], ind) end
34: (a, d) := LL(help[hpr]) ; if a = 1 ∧VL(xx) then
35: if SC(help[hpr], (0,mybuf )) then
36: mybuf := d end end
37: buf[mybuf ] := (safe) arg
38: e := bank[(nr + 1) mod M ]
39: if SC(xx, (mybuf , (nr + 1) mod M, (hpr + 1) mod N)) then
40: mybuf := e
41: result := true
42: else result := false end .

proc VLmul(p)
45: result := VL(xx) .

Since the current value of the object is kept in buf[xind], the store action of
SCmul(p), if it occurs, is split over the lines 37 and 39. The decision to store de-
pends on whether p still has a link to xx. Reading the current value also requires
two actions. In LLmul(p), process p tries to read the current value in 12 and 13. In
line 14, it tests whether in the mean time some other process q has executed line 35
with hpr.q = p. If so, p tries again to read the value in the lines 15 and 16. If the
indirection read in 15 is obsolete when p evaluates the guard of 17, process p reads
the value reserved for it by process q in 35. Indeed, if a process q executes line 35,
it provides process hpr.q a pointer to a value of the object that q has stored in line
21.

Since, in line 18, delayed readers may be reading buf[b] for obsolete indices b,
a number of obsolete indices are protected in array bank. This array is used as a
circular buffer. Obsolete indices that need no protection anymore, are recycled in
line 38.

In view of the test VL(xx) in 34, a process p helps another process only when
executing SCmul with a link to xx. The process it helps has number hpr.p, a copy
of xhpr. Since all processes deserve help, xhpr is incremented modulo N for each
fresh value of xx in line 39. It follows that, if a process p remains long enough in
the stretch from 12 to 14, some other process will help it and reset the first bit
of help[p]. This implies that not more than N + 1 indices have to be protected in
bank. It is therefore enough to take M > N . This concludes a rough description of
the algorithm. The proof below of course provides many additional details.

We next discuss the grain of atomicity, which is indicated by the line labels.
Apart from the assignments to safe variables, all labelled statements are atomic. In
Section 4, we also model the assignments to safe variables by atomic commands.

For the ease of proving, it is advantageous to have the atomic commands as
big as possible, since this makes the underlying transition system smaller. On the
other hand, the straightforward implementation of a command that contains more
than one reference to a simple shared variable is not atomic [OG76]. We therefore
need to justify the atomicity of the commands 32 and 34, which refer to two shared
variables (xx and either bank[nr] or help[hpr]).

In both cases, it concerns the test of a conjunction. It is supposed that the
lefthand conjunct is evaluated before the righthand conjunct. If either conjunct
evaluates to false, the conjunction is false at that moment. If both conjuncts evaluate
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to true, the conjunction was true when the lefthand conjunct was evaluated. Indeed,
once VL(xx) is false, it remains false until the process itself calls LL(xx).

A next point of doubt in the above code could be the atomic assignment to the
LL/SC variable help[p] in line 11. If a machine architecture offers LL/SC/VL on
some variables, it need not also offer atomic assignments to them. In such a case,
line 11 can be replaced by

10: LL(help[p]) ;
11: SC(help[p], (1,mybuf )) ;

Here the assignment is split into two atomic commands and the results of LL and
SC are ignored. Also, note that the LL/SC variables help[p] and bank[k] are read
atomically in the lines 20 and 38. If necessary, this can be implemented with LL. In
this way, one obtains a pure LL/SC algorithm in which the variables xx, help[p],
and bank[k] are accessed only via LL, VL, or SC. The correctness of this pure
alternative is shown below in Section 10.

The differences with [JP05] are as follows. Firstly, in [JP05], line 19 is preceded
by a separate LL operation, but this is unnecessary. The more important difference
is that [JP05] takes M = 2N and does not have the variables xhpr and hpr. This is
possible since our version then has the invariants xhpr = xnr mod N and hpr.q =
nr.q mod N . This makes the word xx smaller, but makes array bank longer than
when one takes M = N + 1.

3 Specification of LL/SC

In order to prove the correctness of the algorithm presented, we need a formal spec-
ification of LL/SC. We also need this for the occurrences of single-word LL/SC in
the implementation. The simplest specification [GH04] of LL/SC for a given shared
variable it of type T attaches to it a set of processes itSet, which contains the
processes that have loaded the value of it since the latest successful SC operation.
So, initially, it = item0 and itSet is empty. The three procedures are specified by

proc LL(p)
11: val := it ; itSet := itSet ∪ {p}

proc SC(p)
32: if p ∈ itSet then it := arg ; itSet := ∅ ; result := true

else result := false end

proc VL(p)
45: result := (p ∈ itSet)

Here, val and arg are private variables of process p of type T and result is a private
boolean variable of p. As indicated by the labels, all three procedures are regarded
as atomic. Let us call this the simple specification LSV .

For the proof of the algorithm of [JP05] we need a more elaborate specification
ELSV that makes the history of the variable it explicit in a shared function hist :
N → T with a shared variable top : N such that hist(top) is the current value of
it. Variable top is incremented by every successful SC operation. Private variables
start and ll serve to record the value of top at the moment that LL is called and is
executed, respectively.

proc LLe(p)
11: start := top
12: choose ll with start ≤ ll ≤ top ; val := hist(ll)
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proc SCe(p)
32: if ll = top then

top++ ; hist(top) := arg ; result := true
else result := false end

proc VLe(p)
45: result := (ll = top)

In this case, SCe and VLe are atomic, while LLe consists of two atomic statements.
Since VL must be false initially, we require that initially top > 0 and ll.p = 0 for
all p. Moreover, hist(top) = item0, the initial value of it.

It can be proved by extending the techniques of [Hes05] that the specifications
LSV and ELSV are equivalent: each of them implements the other in the sense of
[AL91]. They correspond via the equalities it = hist(top) and itSet = {q | ll.q =
top}. The main problem is to deal with the non-atomicity of LLe. We have to leave
this as an exercise for the theoretically minded reader.

4 Reformulation of the Code

We now reformulate the code of Section 2 to recognize in it specification ELSV of
Section 3. Specification LSV of Section 3 is used to decode the low level LL/SC
operations on xx, bank[k] and help[q]. We introduce sets of processes xSet, baSet[k]
and heSet[q] to play the roles of itSet for these variables, respectively.

With respect to the assignments to the safe variables in lines 21 and 37, there
are two measure to take: we have to preclude write-write interferences and to model
the read-write interferences. To preclude write-write interferences in 21 and 37, it
suffices to prove the following invariant:

(Wq) pc.q > 20 ∧ pc.r > 20 ∧ mybuf .q = mybuf .r ⇒ q = r .

This will be a consequence of the invariant (Iq0) to be proved in Section 6 below.
As for read-write interferences, recall that reading a safe shared variable while

writing is in progress, may yield an arbitrary value of the correct type. We therefore
model a labelled assignment ` : x := (safe)E as a nondeterministic choice

` : (x := arbitrary ; goto `) [] x := E .

Here, the first alternative leads to looping. We therefore postulate weak fairness,
so that the first alternative is not chosen infinitely often. This pattern is used to
reformulate commands 21 and 37 in the code below.

The main problem is to identify the value ll that determines the synchronization
point of LL such that the values read by LLmul and LLe correspond. This problem
is postponed to Section 8. We first need to derive a list of invariants.

To formulate these invariants conveniently, we split help[q] into the two com-
ponents

aux : array Process of Bool ,
hind : array Process of Index

with the convention that aux[q] and hind[q] are always the first and second com-
ponents of help[q]. Here we identify the types Bit and Bool in the usual way with
0 = false and 1 = true. We also use the components xind, xnr, xhpr of xx, as
introduced in Section 2. We introduce one private variable bb to hold the numbers
b, d, e read in the lines 14, 34, 38, respectively.

We introduce a location 50 from which the procedures LLmul, SCmul, and
VLmul can be called, to model that the procedures can be called by the processes
in arbitrary order.
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calling(p)
50: ( goto 11 [] goto 45 [] choose arg , goto 32 ) .

The variables start, top, and hist of specification ELSV are treated as auxiliary
variables [OG76] or history variables [AL91]. The actions on them are inserted at
appropriate places. We provide all processes with history variables ptop to hold the
value of top at the moment that the lines 12 and 15 are executed. In this way the
code of Section 2 is transformed into:

proc LLmul(p)
11: start := top ; aux[p] := true ; hind[p] := mybuf ;
12: ind := xind ; nr := xnr ; hpr := xhpr ; add(p, xSet) ; ptop := top ;
13: val := buf[ind] ;
14: bb := hind[p] ; add(p, heSet[p]) ; if aux[p] then goto 19 end ;
15: ind := xind ; nr := xnr ; hpr := xhpr ; add(p, xSet) ; ptop := top ;
16: val := buf[ind] ;
17: if p ∈ xSet then goto 20 end ;
18: val := buf[bb] ; goto 20 ;
19: if p ∈ heSet[p] then

aux[p] := false ; hind[p] := bb ; heSet[p] := ∅ end ;
20: mybuf := hind[p] ;
21: (buf[mybuf ] := arbitrary ; goto 21) [] buf[mybuf ] := val ; goto 50 .

It is well-known that actions on private variables can be atomically combined with
actions on shared variables since there is no danger of interference. It is therefore
allowed to combine line 36 with line 35, and the lines 40, 41 and 42 with 39. We do
this to make the invariants easier to formulate and prove.

proc SCmul(p)
32: add(p, baSet[nr]) ; if bank[nr] = ind ∨ p /∈ xSet then goto 34 end ;
33: if p ∈ baSet[nr] then bank[nr] := ind ; baSet[nr] := ∅ end ;
34: bb := hind[hpr] ; add(p, heSet[hpr]) ;

if ¬ aux[hpr] ∨ p /∈ xSet then goto 37 end ;
35: if p ∈ heSet[hpr] then

aux[hpr] := false ; hind[hpr] := mybuf ;
heSet[hpr] := ∅ ; mybuf := bb end ;

37: (buf[mybuf ] := arbitrary ; goto 37) [] buf[mybuf ] := arg ;
38: bb := bank[(nr + 1) mod M ] ;
39: if p ∈ xSet then

xind := mybuf ; xnr := (nr + 1) mod M ;
xhpr := (hpr + 1) mod N ; xSet := ∅ ; mybuf := bb ;
result := true ; top++ ; hist(top) := arg ;

else result := false end ; goto 50 .

Since VLmul is implemented as VL(xx), the action SCmul is successful if and only
if SC(xx) in line 39 is successful. We therefore place the auxiliary modifications of
hist and top in line 39.

proc VLmul(p)
45: result := (p ∈ xSet) ; goto 50 .

We regard it as self-evident that the algorithm of Section 2 implements the
transformed algorithm of this section.
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5 Proving the Algorithm

When we started to investigate the algorithm, it soon became apparent that we
could use PVS as a proof assistant. In PVS, we defined the state space in terms of
the shared and private variables, like the following:

N, M: posnat
Process: TYPE = below[N]
Index: TYPE = below[N+M]

state: TYPE = [#
xind: Index , % more shared variables
ind: [Process -> Index] , % more private variables
pc: [Process -> nat]

#]

The code of Section 4 is easily transformed into a transition system. For example,
using x and y of type state and p of type Process, line 20 is represented by the
definition:

step20(p, x, y): bool =
x‘pc(p) = 20 AND
y = x WITH [

‘mybuf(p) := x‘hind(p) ,
‘pc(p) := 21 ]

We then started to guess and prove several invariants as described in the next
sections. This improved our understanding and our confidence in the correctness of
the algorithm. The main creative step was to invent specification ELSV of Section
3, and its incorporation in the code of Section 4, especially in the lines 11 and 39.

Finding invariants in an algorithm one does not really understand requires a
good intuition, but is mainly a lot of work. It was difficult to get the precise forms
of the uniqueness invariants (Iq0) up to (Iq4) of Section 6. A next bottleneck was
the set of invariants about delayed processes, starting with (Kq4) in Section 7.

The most difficult point was the identification of the synchronization point at
line 34, and the associated introduction of the auxiliary variables htop and syn,
as described in Section 8 below. It came as a surprize that we needed a forward
simulation rather than a refinement mapping to conclude the proof in Section 9.

The complete PVS code is available at [Hes06]. Here, one can also see which
invariants are used, and where, to prove preservation of some invariant. For example,
the following lemma shows that (Jq10) is used to prove preservation of (Mq2) when
process p executes line 18:

mq2_at_18: LEMMA
mq2(q, x) AND jq10(q, x) AND step18(p, x, y)
IMPLIES mq2(q, y)

The role of PVS was plain verification. We ourselves invented the invariants and the
forward simulation. In the more difficult proofs of preservation of some invariants,
we also had to guide the choices of case distinctions.

Overview of the proof. We prove that the transformed algorithm of Section
4 implements specification ELSV of Section 3 in the following way. In Section 6,
we develop a list of invariants that preclude interference. In Section 7, the list is
extended with invariants about values and delay. Section 8 determines the choice of
ll in LLe and again extends the list of invariants. Finally, in Section 9, we construct
a forward simulation from the algorithm as extended in Section 8 to specification
ELSV .
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6 The Uniqueness Invariants

The paper [JP05] mainly uses behavioural arguments, but it does have two invari-
ants. The first one indicates how the M + N index values can be distributed over
the variables xind, mybuf .q, hind[q], and bank[k]. In order to obtain such a result,
we started to prove a number of invariants about the controle variables that would
enable us to prove something like this invariant.

In the invariants we implicitly universally quantify over all free variables like
process identifiers q, r. The first main invariant is

(Jq0) q ∈ xSet ⇒ ind.q = xind ∧ nr.q = xnr ∧ hpr.q = xhpr .

This holds initially, since then xSet is empty. The only locations where xSet and
the other six variables are modified are 12, 15, and 39. Predicate (Jq0) is preserved
when process q executes 12 or 15 since the consequent is made true. It is preserved
at 39 since xSet is made empty. We use names like (Jq0) for the invariants to make
them easier to find and replace during the development of the mechanical proof.

Two easy invariants concerning aux are

(Jq1) aux[q] ⇒ pc.q ∈ {12, 13, 14, 19} ,
(Jq2) pc.q = 19 ∧ aux[q] ⇒ q ∈ heSet[q] .

Indeed, we use (Jq2) to prove that (Jq1) is preserved in 19. The invariance of (Jq2)
uses the observation that when some process p at 35 makes heSet[q] empty it also
resets aux[q].

Command 19 is needed to reset aux[p]. This is harmless for hind[p] because of
the easy invariant

(Jq3) pc.q = 19 ∧ q ∈ heSet[q] ⇒ bb.q = hind[q] .

We next turn to the actions of SCmul. The assignment of 33 uses correct private
copies of xnr and xind according to

(Jq4) pc.q = 33 ∧ q ∈ baSet[nr.q]
⇒ ind.q = xind ∧ nr.q = xnr ∧ hpr.q = xhpr ∧ bank[xnr] 6= xind .

In order to show the invariance of (Jq4), we also postulate

(Jq5) pc.q ∈ {34 . . . 39} ∧ q ∈ xSet ⇒ bank[xnr] = xind ,
(Jq6) pc.q = 33 ∧ q ∈ xSet ∧ q /∈ baSet[nr.q] ⇒ bank[xnr] = xind .

Preservation of (Jq4) follows from (Jq0) and (Jq5), preservation of (Jq5) follows
from (Jq0), (Jq4), and (Jq6); preservation of (Jq6) follows from (Jq0) and (Jq4).

The assignments in 35 reset aux[r] and interchange mybuf .p and hind[hpr.p]
because of the invariant

(Jq7) pc.q = 35 ∧ q ∈ heSet[hpr.q]
⇒ aux[hpr.q] ∧ bb.q = hind[hpr.q] .

Preservation of (Jq7) at 11 follows from (Jq1).
In 39, the new value of mybuf is taken out of bank according to

(Jq8) pc.q = 39 ∧ q ∈ xSet ⇒ bb.q = bank[(xnr + 1) mod M ] .

Preservation of (Jq8) follows from (Jq0) and (Jq4).
We are now ready for invariant (I1) in Section 3 of [JP05]. We treat it as a

conjunction of five invariants, to be called the uniqueness invariants. In order to
express them succinctly, we use a conditional expression to define
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mb.q = (pc.q ∈ {12 . . . 20} ? hind[q] : mybuf .q) .

Roughly speaking, the uniqueness invariants say that xind, the N indices mb.q, and
the M indices bank[j] are all different. Since there are only M + N indices, this
cannot be literally true. There is and must be one potential exception. It turns out
that this is at j = xnr. The uniqueness invariants are

(Iq0) mb.q = mb.r ⇒ q = r ,
(Iq1) mb.q = bank[j] ⇒ j = xnr ,
(Iq2) bank[j] = xind ⇒ j = xnr ,
(Iq3) bank[j] = bank[k] ⇒ j = k ,
(Iq4) mb.q 6= xind .

First notice that (Iq0) implies predicate (Wq) of Section 4.
These five invariants are threatened by the assignments to hind, mybuf , bank,

xind, and xnr in 19, 33, 35, and 39. The lines 11 and 20 are harmless because of
the definition of mb.

In line 19, the assignment to hind[p] (i.e., mb.p) is harmless because of (Jq3). In
line 33, the assignment to bank[nr.p] threatens (Iq1), (Iq2), and (Iq3). By (Jq4), we
then have nr.p = xnr and ind.p = xind. This is enough to preserve (Iq1) and (Iq2);
in the case of (Iq3), we additionally need (Iq2) in the precondition.

In line 35, the invariants (Iq0), (Iq1), (Iq4) are threatened by the assignments to
mybuf .p and hind[hpr.p]. Here, we need (Jq7) and (Jq1) to ascertain that command
35 effectively swaps mb.p and mb.(hpr.p).

In line 39, the invariants (Iq0), (Iq1), (Iq2), (Iq4) are threatened by the assign-
ments to mybuf .p, xind, and xnr. By (Jq0), (Jq5), and (Jq8), the effect of the body
of 39 on the invariants (Iq*) is equivalent with the rotation

{ xind = bank[xnr] } xind := mb.p ;
xnr := (xnr + 1) mod M ; mb.p := bank[xnr] .

Therefore (Iq0) is preserved because of (Iq1); (Iq1) is preserved because of (Iq3)
and (Iq4); (Iq2) is preserved because of (Iq1) and (Iq4); (Iq4) is preserved because
of (Iq0) and (Iq1).

In the next section, we also need the invariants:

(Jq9) pc.q ∈ {15, 16, 17, 18} ⇒ bb.q = hind[q] ,
(Jq10) pc.q = 18 ⇒ q /∈ xSet .

Preservation of (Jq9) follows from (Jq1) and (Jq7) at 35; (Jq10) is easy.

7 Invariants about Values and Delay

We come to the layer of invariants that express how the multiwords are represented.
They are made recognizable by names that start with “Mq”. Firstly, the latest value
written arrives in buf at the main index xind, according to the invariants:

(Mq0) buf[xind] = hist(top) ,
(Mq1) pc.q ∈ {38, 39} ⇒ buf[mybuf .q] = arg .q .

Preservation of (Mq0) follows from (Iq4) at 21 and 37, and at 39 from (Mq1).
Preservation of (Mq1) follows from (Iq0).

When its latest LL has not yet been overwritten, process q often holds the most
recently written value in val.q or buf[mybuf .q], as is expressed in

(Mq2) q ∈ xSet ∧ pc.q ∈ {14, 17, 19, 20, 21} ⇒ val.q = hist(top) ,
(Mq3) q ∈ xSet ∧ pc.q ∈ {45, 50, 32, 33, 34, 35} ⇒ buf[mybuf .q] = hist(top) .
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Preservation of (Mq2) at 13 and 16 follows from (Jq0) and (Mq0), at 18 from (Jq10).
Preservation of (Mq3) at 21 and 37 follows from (Iq0) and (Mq2).

Recall from Section 3 that we need to initialize top > 0. For simplicity, we
choose top = M ·N initially. It follows that xnr and nr.q represent top and ptop.q
modulo M and that xhpr represents top modulo N according to the invariants:

(Kq0) xnr = top mod M ∧ xhpr = top mod N ,
(Kq1) nr.q = ptop.q mod M ∧ hpr.q = ptop.q mod N .

Preservation of (Kq0) at 39 follows from (Jq0). Preservation of (Kq1) at 12 and 15
follows from (Kq0). If M is a multiple of N , it follows from these invariants that
we can eliminate xhpr and the private variables hpr. For the special case M = 2N ,
this elimination gives the original algorithm of [JP05].

The auxiliary variable ptop.q serves to express the delay of process q. The rele-
vant invariants are

(Kq2) ptop.q ≤ top ,
(Kq3) ptop.q = top ≡ q ∈ xSet .

Preservation of (Kq2) is trivial. Preservation of (Kq3) at 39 follows from (Kq2).
Array bank serves as a temporary protector for ind, according to the invariant

(Kq4) ptop.q < top < ptop.q + M ⇒ bank[nr.q] = ind.q .

Preservation of (Kq4) at 33 follows from (Jq4), (Kq0), and (Kq1), at 39 from (Jq0),
(Jq5), and (Kq3). We now claim the interference precluding invariant

(Kq4A) top < ptop.q + M ⇒ ind.q 6= mb.r

This predicate follows from the invariants obtained above. To prove this, we assume
top < ptop.q + M and ind.q = mb.r and we derive a contradiction. By (Kq2), we
have ptop.q < top or ptop.q = top. In the first case, (Kq4) and (Iq1) together
imply nr.q = xnr. By (Kq1) and (Kq0), this yields ptop.q ≡ top (mod M). Since
ptop.q and top differ less than M , this gives ptop.q = top, a contradiction. In the
second case, (Kq3) and (Jq0) give ind.q = xind, so that (Iq4) gives a contradiction.

Concerning the safe variables buf[ind] read in line 13, we claim the invariant

(Mq4) pc.q = 13 ∧ top < ptop.q + M ⇒ buf[ind.q] = hist(ptop.q) .

Preservation of (Mq4) at 21 and 37 follows from (Kq4A). At 12 and 15, it follows
from (Mq0), at 39 from (Kq2).

In view of the conditional jump at 14, we claim the invariant

(Mq5) pc.q = 14 ∧ aux[q] ⇒ val.q = hist(ptop.q) .

This predicate is preserved at 39 because of (Kq2). Preservation at 13 follows from
(Mq4) and the new postulate

(Kq5A) pc.q = 13 ∧ aux[q] ⇒ top < ptop.q + M .

In order to prove (Kq5A), we strengthen it somewhat. The point is that, if process
p remains long enough at line 13, some process will “help it” and make aux[p] false
in line 35. This is expressed in the invariant

(Kq5) pc.q = 13 ∧ aux[q] ∧ ptop.q < n ∧ n mod N = q ⇒ top ≤ n .

Using N < M and some elementary arithmetic one can show that (Kq5) indeed
implies (Kq5A). For preservation of (Kq5) at 39, we first observe that top mod N =
q implies xhpr = q because of (Kq0a). Therefore, preservation of (Kq5) at 39 follows
from (Kq0a), (Kq3), and the additional invariant
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(Kq6) pc.q ∈ {37, 38, 39} ∧ q ∈ xSet ∧ pc.xhpr = 13 ∧ aux[xhpr]
⇒ xhpr ∈ xSet .

Preservation of (Kq6) at 34 follows from (Jq0), and at 35 from (Jq0) and the new
invariant

(Kq7) pc.q = 35 ∧ q ∈ xSet ∧ pc.xhpr = 13 ∧ aux[xhpr]
⇒ q ∈ heSet[xhpr] ∨ xhpr ∈ xSet.

Preservation of (Kq7) at 34 follows from (Jq0).

8 The Synchronization Point

It still remains to decide how the number ll is chosen in line 12 of specification
ELSV of Section 3. Procedure LLmul(p) contains three assignments to val.p, but
we concentrate on line 18. There, process p reads the buffer at an index provided
via line 14 by some other process in line 35. In this situation, we need to prove that
buf[bb.p] = hist(ll) for some number ll with start.p ≤ ll ≤ top. This number ll
should be determined as the value of top at some moment during the execution of
the “helping” process.

One might expect that ll should get the value of top when the helping process
executes line 35 successfully. This should be justified by the conjectured invariant

(?) pc.q = 35 ∧ q ∈ heSet[hpr.q] ⇒ q ∈ xSet .

This conjecture, however, is not valid, as is shown by the following scenario. Assume
that p0 and p1 are at lines 34 and 39, respectively, with p0, p1 ∈ xSet both. Put
p2 = xhpr. Assume that p2 executes 11 and 12. Then p0 can execute 34 and enter
35 with p0 ∈ heSet[p2]. Then p1 can execute 39 and remove p0 from xSet, thus
violating the conjectured invariant.

This shows that line 35 is not the synchronization point in the case of “helping”.
Indeed, the paper [JP05] correctly takes line 34 as the synchronization point we are
looking for.

We thus give all processes private history variables syn and ll, and we use an
array htop of history variables to virtually communicate the value of syn to the
process that is being helped. We add syn := top to line 34, and give htop[hpr.p]
the value of syn in the then branch of 35. We add ll := top to lines 12 and 15, and
ll := htop[p] to 18.

34: bb := hind[hpr] ; add(p, heSet[hpr]) ; syn := top ;
if ¬ aux[hpr] ∨ p /∈ xSet then goto 37 ;

35: if p ∈ heSet[hpr] then
aux[hpr] := false ; hind[hpr] := mybuf ;
heSet[hpr] := ∅ ; mybuf := bb ;
htop[hpr] := syn end ;

12: 15: ind := xind ; nr := xnr ; hpr := xhpr ; add(p, xSet) ; ll := ptop := top ;
18: val := buf[bb] ; ll := htop[p] ; goto 20 .

These extensions of the code clearly do not endanger the invariants obtained before.
We now postulate the additional invariants

(Lq0) ll.q ≤ top ,
(Lq1) htop[q] ≤ top ,
(Lq2) syn.q ≤ top ,
(Lq3) start.q ≤ top ,
(Lq4) pc.q ∈ {13 . . . 18} ⇒ ll.q = ptop.q .
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Indeed, preservation of (Lq0) follows from (Lq1) at 17; preservation of (Lq1) follows
from (Lq2) at 35. Preservation of (Lq2), (Lq3) and (Lq4) is trivial.

We now reach the invariants that will be used to relate the implementation with
the specification ESLV of Section 3. The first of these invariants is

(Mq6) pc.q ∈ {19, 20, 21} ⇒ val.q = hist(ll.q).

The proof of (Mq6) is based on:

(Mq2A) pc.q = 17 ∧ q ∈ xSet ⇒ val.q = hist(ll.q) ,
(Mq7A) pc.q = 18 ⇒ buf[bb.q] = hist(htop[q]) .

Indeed, preservation of (Mq6) follows at 14 from (Mq5) and (Lq4), at 17 from
(Mq2A), at 18 from (Mq7A), and at 39 from (Lq0).

Predicate (Mq2A) follows from (Mq2), (Kq3), and (Lq4). Predicate (Mq7A)
follows from (Jq1), (Jq9), and (Mq7), where (Mq7) is given by

(Mq7) pc.q ∈ {12 . . . 18} ∧ ¬ aux[q] ⇒ buf[hind[q]] = hist(htop[q]) ,
(Mq8) pc.q = 35 ⇒ buf[mybuf .q] = hist(syn.q) .

Preservation of (Mq7) uses (Mq8) at 35, (Iq0) at 21 and 37, (Lq1) at 39. Preservation
of (Mq8) uses (Mq3) at 34, (Iq0) at 21 and 37, (Lq2) at 39.

In view of the specification, we also claim the invariant

(Lq5) q ∈ xSet ≡ ll.q = top .

The predicate is preserved at 39 because of (Lq0), and at 17 because of (Lq0) and
the new invariant

(Lq6) pc.q ∈ {16, 17, 18} ⇒ htop[q] ≤ ll.q

For the proof of (Lq6), we postulate the additional invariants

(Lq7) pc.q = 12 ∨ start.q ≤ ll.q ,
(Lq8) pc.q ∈ {12 . . . 18} ∧ ¬ aux[q] ⇒ start.q ≤ htop[q] ,
(Lq9) pc.q = 35 ∧ q ∈ heSet[hpr.q] ⇒ start.(hpr.q) ≤ syn.q .

Preservation of (Lq6) at 15 and 35 follows from (Lq1), (Jq1), and (Lq7). Predicate
(Lq7) is preserved at 12 and 15 because of (Kq2) and (Lq3), at 17 because of (Jq1)
and (Lq8). Predicate (Lq8) is preserved at 35 because of (Lq9). Preservation of
(Lq9) follows at 11 from (Jq1) and (Jq7), at 34 from (Lq3).

9 Forward Simulation

In this section, we show that the algorithm implements LL/SC according to the
second specification of Section 3. We assume that the procedures LLe, SCe, and
VLe return to location 50, just as the concrete procedures. So, location 50 and its
command as given in Section 4 also serve in the abstract specification. We have two
state spaces, the concrete state space of Section 4 and the abstract state space

AbState = [# hist : N → Item ; top : N ,
start, ll,pc : Process → N ; val, arg : Process → Item ,
result : Process → B #] .

We let x, y range over the concrete state space and u, v range over the abstract
state space. If w is any field of the concrete or abstract state space, we write x.w
(etc.) for the value of w in state x. Let step(x, y) mean that the concrete algorithm
can do a step from state x to state y (or x = y), and let astep(u, v) mean that the
abstract specification can to a step from u to v or that u = v.
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Outside procedure LLmul, we need to regard the private variables val and ll as
visible, but inside this procedure they may (and do) hold uninteresting temporary
values. This is a complication that precludes the use of a refinement mapping cf.
[AL91]. Instead we use a forward simulation relation [HHS86,LV95,Mil71], which
allows us to ignore the values of these variables during LLmul.

We therefore define the relation F between the concrete state space and the
abstract state space by (x, u) ∈ F iff

x.hist = u.hist ∧ x.top = u.top ∧ x.arg = u.arg
∧ x.result = u.result ∧ x.start = u.start
∧ (∀ q : u.pc.q = g(x.pc.q)

∧ (x.pc.q > 21 ⇒ x.ll.q = u.ll.q ∧ x.val.q = u.val.q) ) ,

where g(n) = 12 for 12 ≤ n ≤ 21, g(n) = 32 for 32 ≤ n ≤ 39, and else g(n) = n. It
easily follows that every concrete initial state x0 allows an abstract intial state u0

with (x0, u0) ∈ F .
Let Mq stand for the set of concrete states where the conjunction of (Mq6),

(Lq0), and (Lq7) holds, and let Lq5 stand for the set where (Lq5) holds.

Lemma 1. If step(x, y) and x ∈ Mq ∩ Lq5 and (x, u) ∈ F , there is an abstract
state v with astep(u, v) and (y, v) ∈ F .

Proof. We define step(p, n, x, y) to mean that in concrete state x, process p has
x.pc.p = n and p can do a step such that y is the new state. Similarly, astep(p, n, u, v)
means that in abstract state u, process p has u.pc.p = n and p can do a step such
that v is the new abstract state. We now verify that, for (x, u) ∈ F ,

step(p, 21, x, y) ∧ x ∈ Mq ⇒ ∃ v : (y, v) ∈ F ∧ astep(p, 12, u, v) ,
step(p, 39, x, y) ∧ x ∈ Lq5 ⇒ ∃ v : (y, v) ∈ F ∧ astep(p, 32, u, v) ,
step(p, 45, x, y) ∧ x ∈ Lq5 ⇒ ∃ v : (y, v) ∈ F ∧ astep(p, 45, u, v) ,
step(p, n, x, y) ∧ n ∈ {11, 50} ⇒ ∃ v : (y, v) ∈ F ∧ astep(p, n, u, v) ,
step(p, n, x, y) ∧ n /∈ {11, 21, 39, 45, 50} ⇒ (y, u) ∈ F 2

This result shows that, under assumption of the invariants, every step of the
concrete algorithm can be mimicked by a step of the abstract algorithm. We there-
fore define Inv to be the set of states where all invariants listed above hold, and
let F ′ be the set of pairs (x, u) ∈ F with x ∈ Inv . Then step(x, y) and (x, u) ∈ F ′

implies that the existence of v with astep(u, v) and (y, v) ∈ F ′. Since the procedures
have no loops, we need not bother about progress conditions. We thus have:

Theorem 1. Relation F ′ is a forward simulation from the concrete system to the
abstract specification.

This concludes the proof that the algorithm of Jayanti and Petrovic is correct.
As announced above, we constructed and verified this proof with the proof assistant
PVS [OSRSC01]. The proof script is available at [Hes06].

10 The Pure LL/SC Algorithm

As announced at the end of Section 2, we here treat the variation of the algorithm
in which the variables xx, help[p], and bank[k] are accessed only via LL, VL, and
SC. Firstly, line 11 is implemented by means of LL followed by SC as indicated
there. Therefore, line 11 is split into two atomic commands for which we use the
line numbers 10 and 11. Secondly, the atomic read operations in the lines 20 and
38 are replaced by LL operations such that the acting process enters its identifier
in the corresponding set. The lines 11, 20, and 38 are thus replaced by
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10: start := top ; add(p, heSet[p]) ;
11: if p ∈ heSet[p] then

aux[p] := true ; hind[p] := mybuf ; heSet[p] := ∅ ;
20: mybuf := hind[p] ; add(p, heSet[p]) ;
38: bb := bank[(nr + 1) mod M ] ; add(p, baSet[(nr + 1) mod M ]) .

Moreover, in line 50, we replace goto 11 by goto 10.
This modification only directly threatens correctness of the invariants (Iq0),

(Iq1), (Iq4), (Mq7), (Lq7) and (Lq8). Since the assignment to start has moved to
line 10, we need to modify (Lq7) into

(Lq7’) pc.q = 11 ∨ pc.q = 12 ∨ start.q ≤ ll.q .

The other invariants can be retained, but in order to preserve them at line 11 we
need to postulate the additional invariant

(Lq10) pc.q = 11 ⇒ q ∈ heSet[q] .

Preservation of (Lq10) at 35 follows from (Jq1) and (Jq7). Finally, in the forward
simulation, the role of location 11 is taken over by 10. After these changes, every-
thing goes through as before. Indeed, it was easy to adapt the PVS proof script
of the original algorithm to the pure alternative. When making the alternative, we
realized the relevance of the new invariant (Lq10), but we had missed the need of
(Lq10) for preservation of (Iq0), (Iq1), and (Iq4) at 11. This came up while adapting
the proof script for PVS.

11 Mixed Conclusions

We have given a refinement proof of the wait-free implementation [JP05] of LL,
SC and VL on a multiword variable by means of LL, SC and VL on single words
and 3N safe variables, and have obtimized it to an implementation that only uses
2N + 1 safe variables. Since there are cheaper and more powerful implementations
of arrays of lock-free multiword variables, we regard the present result primarily of
theoretical interest.
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