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Abstract. The refinement calculus of Back, Morgan, Morris, and others is
based on monotone predicate transformers (weakest preconditions) where
conjunctions stand for demonic choices between commands and disjunctions
for angelic choices. Arbitrary monotone predicate transformers cannot be
modelled by relational semantics but can be modelled by so-called multire-
lations. Results of Morris indicate, however, that the natural domain for the
combination of demonic and angelic choice is the free distributive completion
(FDC) of the state space.
The present paper provides a new axiomatization and more explicit construc-
tion of the FDC of an arbitrary ordered set. The FDC concept is self-dual,
but the construction is not. We therefore determine the duality function
from the FDC to the dual of the FDC of the dual ordered set. The elements
of the FDC are classified according to their conjunctivity and disjunctiv-
ity. The theory is applied to imperative programming with operators for
sequential composition and demonic and angelic choice. The theory based
on the FDC is shown to be equivalent to a weakest precondition theory for
up-closed predicates. If the order is discrete (i.e. the equality relation), the
FDC turns out to be the domain of the choice semantics of Back and Von
Wright, whereas up-closed multirelations are functions towards this domain.
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1 Introduction

The refinement calculus of Back, Morgan, Morris, and others is based on monotone
predicate transformers where conjunctions stand for demonic choices between com-
mands and disjunctions for angelic choices. The words demonic and angelic describe
the opposite faces of the coin of nondeterminism, as explained in Section 1.1. In Sec-
tion 1.2, we sketch the history of 50 years of nondeterminism, culminating in Morris’
proposal of the free distributive completion. Section 1.3 contains an overview of the
present paper.

1.1 The two faces of nondeterminism

Nondeterminism is the phenomenon that a command started in a given initial state
allows more than one (or possibly less than one) final state. If X is the set of
possible initial states and Y is the set of possible final states, the natural way to
formalize this is by means of a relation R ⊆ X × Y , where (x, y) ∈ R means that
the command, if started in initial state x, can result in final state y.

Let us now assume that the programmer aims at a certain postcondition for
the command. The difference between demonic and angelic choice is the question
whether all final states y should satisfy the postcondition, or that it suffices that the
postcondition holds in at least one final state. In the first case, the nondeterminism
may be resolved (in a later stage of design) in an arbitrary way; we therefore speak



2

of a demonic choice. In the second case, the choice requires care, and we speak of
angelic choice.

Since relation R cannot be used to differentiate between the two interpreta-
tions, we turn to the weakest precondition, denoted wp.c.p, such that command c
is guaranteed to establish postcondition p. The function wp.c that transforms the
postcondition into its weakest precondition is a typical predicate transformer.

Restricting for the moment to binary choices, say between commands c and d,
we write c [] d and c ♦ d for the demonic and angelic choices between c and d,
respectively. Then we have

wp.(c [] d).p = wp.c.p ∧ wp.d.p ,
wp.(c ♦ d).p = wp.c.p ∨ wp.d.p .

This can be understood as follows. In the demonic case, with [] , it is unknown
whether c or d will be executed. Therefore, in order to guarantee postcondition p,
we need to require both preconditions. In the angelic case, with ♦ , the “angel” can
choose c or d, and it is able to establish postcondition p if and only if at least one of
the preconditions holds. This shows that demonic choices correspond to conjunctions
of predicate transformers, while angelic choices correspond to disjunctions.

Although one can be content with weakest preconditions to describe the nonde-
terminism, one can also strive for a modelling of the commands as functions with
some kind of virtual final states, in the same way as complex numbers were intro-
duced in mathematics to model intermediate results in numerical computations.

In this paper, following [36,37], we show that the latter aim is realizable. The
aim is to strengthen the foundations of [36,37], e.g., by providing axioms that char-
acterize the categorical definition of the “free distributive completion”.

The alternating states of the title are the virtual states. On the one hand, they
are the elements of the free distributive completion of the state space. On the other
hand, they can be regarded as Boolean functions on predicates, and they induce
the same weakest precondition semantics as before. Once the formalism can handle
alternating states, it can easily be extended to handle alternating expressions. We
use the term alternation to refer to the combination of the two flavours of nondeter-
minism, following [9]. Allowing nondeterminism via alternating expressions makes
it easier to postpone design decisions, and enables us to combine nondeterminism
of both flavours with a functional programming style.

1.2 Fifty years of nondeterminism

Nondeterminism was introduced in computer science in 1959 for finite automata by
Rabin and Scott [41]. This nondeterminism requires the angelic interpretation, be-
cause a nondeterministic finite automaton accepts a string w if and only if it has at
least one accepting computation for w, regardless of possibly rejecting or nontermi-
nating computations. In 1962, Chomsky [11] and Schützenberger introduced angelic
nondeterminism in pushdown automata to be able to accept arbitrary context-free
languages. In 1971, Cook [12] used angelic nondeterministic Turing machines to
define the class NP of nondeterministic polynomial-time complexity.

The idea of program correctness can be traced back to Turing [44], but it became
an active research area at the end of the 60s, with [22,30,39]. This was partly inspired
by the growing field of parallelism and multiprogramming [16]. In 1975, Dijkstra [17]
introduced demonic nondeterminism for his guarded command language, without
mentioning that the intention of his nondeterminism differed from the established
use in automata theory. Actually, Dijkstra used the term nondeterminacy instead
of nondeterminism, but his adjective was nondeterministic and the subtlety was
missed by most of his readers.
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From 1977 onward, the CIP group used nondeterminism, roughly speaking, for
syntax and nondeterminacy for semantics, in either case with the demonic interpre-
tation, e.g., [8]. Indeed, in programming theory, demonic nondeterminism became
the rule. This was partly justified by the actual occurrence of demonic nondeter-
minism in multiprogramming.

Initially, this nondeterminism usually was explicitly bounded, e.g. [2,13,15,18]. In
particular, Dijkstra [18, p. 77] mentioned the difficulty of implementing a mechanism
to choose within a finite time between infinitely many possibilities. After some
years, however, unbounded nondeterminism was proposed and investigated, e.g., in
[1,7,8,19,23]. In particular, Park [40] introduced the term loose nondeterminism to
make it explicit that an implementation is not required to be able to produce all
possible results. This idea was essential for the nondeterministic datatypes of [24].
Chandy and Misra [10] exploited demonic nondeterminism mitigated by fairness
to eliminate sequential composition in their programming package UNITY for the
construction of parallel programs.

The combination of demonic and angelic nondeterminism was first proposed in
1981, for the alternating Turing machines of [9]. Here both forms of nondeterminism
were bounded. It seems that the term “angelic non-determinism” first occurs in [31].
Around 1989, angelic nondeterminism entered weakest precondition semantics via
e.g. [3,25,34,35]. In programming theory, it is convenient to allow both flavours of
nondeterminism to be unbounded. Full treatments of the semantics of unbounded
angelic and demonic nondeterminism with recursion (and local variables) were given
in [4,27,28].

Angelic nondeterminism is not often used in program correctness, but in [26],
we used a weakest angelic precondition to develop a parsing algorithm, because
finding a derivation according to a context-free grammar inherently requires angelic
choices. In 1995, R.M. Dijkstra [21] used arbitrary monotone predicate transformers
with their demonic conjunctions and angelic disjunctions to describe and analyse
the semantics of UNITY.

As shown in Section 1.1, relational semantics do not distinguish demonic and an-
gelic choices and therefore do not model arbitrary monotone predicate transformers.
In [4,33,42], it was realized that monotone predicate transformers can be modelled
by so-called multirelations. This multirelation model is essentially equivalent to one
of the constructions of the free distributive completion (FDC), which Morris [36]
defines for an arbitrary ordered set, following [43]. Following Morris, we regard the
FDC of a state space as the natural domain for the combination of demonic and
angelic choices.

1.3 The present paper

This paper is devoted to a deeper study of the FDC and to a more explicit appli-
cation to imperative programming.

In Section 2, inspired by Morris [36], we present three axioms that characterise
the FDC of an arbitrary ordered set. Morris’ construction of the FDC is explicit,
but requires two steps and a rather extended terminology. We “refactor” his con-
struction, and prove its correctness in such a way that it also shows that our axioms
characterise the FDC, whereas Morris only proved that the FDC is a model of his
axioms.

The elements of the FDC are the alternating states of the title of this paper.
They serve as states with additional information concerning demonic and angelic
choices. Our construction of the FDC enables us to identify the alternating states
with a kind of monotone predicate transformers. We give a new treatment of the
duality of the FDC.



4

In Section 3, we investigate the junctivity properties of the alternating states,
regarded as predicate transformers. In particular, we show that an alternating state
is conjunctive (disjunctive) iff it is a conjunction (disjunction) of proper states. We
also characterize the finitely conjunctive states.

Section 4 finally presents the alternating states for imperative programming.
It shows that the semantics with the alternating states are equivalent to weakest
precondition semantics. The junctivity properties of the predicate transformers are
those of the alternating states in the image of the function. The well-known duality
on predicate transformers turns out to correspond to the natural duality on the al-
ternating states. Commands are then introduced as functions that yield alternating
states. Conclusions are drawn in Section 5.

We begin with some preparations. In Section 1.4, we fix the nomenclature for
ordered sets and completeness. Section 1.5 contains material on functions, power
sets, and order. Complete distributivity is introduced in Section 1.6. Section 1.7
presents order in function spaces and provides the main examples of completely
distributive ordered sets.

1.4 Order and completeness

Following [6], we use the term order, ordered set, and monotone where other authors
use partial order, partially ordered set (poset), and monotonic.

For an ordered set X, the dual X◦ is defined as the same set with the opposite
order ≤◦ given by x ≤◦ x′ ≡ x′ ≤ x. An ordered set X is called discrete if the order
is the equality relation, or equivalently if it is equal to its dual as an ordered set.

Recall that an ordered set X is called complete if every subset A of X has a least
upper bound (join, denoted by

∨
A) and a greatest lower bound (meet, denoted by∧

A). The unique greatest element of X is >X =
∧
∅; the unique smallest element

is ⊥X =
∨
∅.

1.5 Functions, power sets, and order

Function application is denoted by means of an infix operator “.” (dot) that binds
stronger than all binary and all prefix operators. It associates to the left, to allow
currying.

For any set X, we write P.X to denote its power set, the set of its subsets
ordered by inclusion. For any function f : X → Y , we have the direct image function
f∗ : P.X → P.Y defined by f∗.A = {f.x | x ∈ A} ∈ P.Y for all A ∈ P.X.

A function f : X → Y between ordered sets X and Y is monotone if it preserves
the order. It is called an order embedding if additionally f.x ≤ f.x′ implies x ≤ x′

for all x, x′ ∈ X. Function f is an order embedding if and only if f is injective and
induces an isomorphism of X with the image f∗.X ordered as a subset of Y . This
condition implies that f is monotone and injective, but the inverse implication is
not valid.

A function f : X → Y between complete ordered sets is called disjunctive if it
preserves least upper bounds, i.e. if x =

∨
A implies f.x =

∨
f∗.A for all x ∈ X

and A ⊆ X. It is called conjunctive if it preserves greatest lower bounds. It is called
junctive if it is both disjunctive and conjunctive [20].

Our application of the terms disjunctivity and conjunctivity rather than join-
homomorphism and meet-homomorphism is justified by the fact that our ordered
sets are mostly sets of predicates where join and meet coincide with disjunction and
conjunction.
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1.6 Complete distributivity

A complete ordered set X is called completely distributive if it is complete and, for
every family of index sets (i ∈ I : M.i) and families of elements (j ∈ M.i : a.j) in
X, using R =

∏
i∈I M.i, we have∧

i∈I

∨
j∈M.i a.j =

∨
r∈R

∧
i∈I a.(r.i) .

We assume validity of the Axiom of Choice. This is nothing but the axiom that,
for every family of nonempty sets (i ∈ I : M.i), the product set R =

∏
i∈I M.i is

nonempty. The elements of R are called choice functions. The Axiom of Choice thus
enables us to combine many choices r.i ∈M.i in a single choice r.

This axiom has the consequence that complete distributivity is self-dual: if an
ordered set X is completely distributive, its dual X◦ is also completely distributive.
See e.g. [5,29].

The set B of the Booleans is ordered with false < true, so that ≤ is the same
as ⇒. The operators

∨
and

∧
correspond to ∃ and ∀. Complete distributivity of B

boils down to

∀ i ∈ I : ∃ j ∈M.i : a.j ≡ ∃ r ∈
∏

i∈I M.i : ∀ i ∈ I : a.(r.i) .

This is nothing but an unusual form of the Axiom of Choice. In other words, by
postulating the Axiom of Choice, we postulated complete distributivity of B.

1.7 Order in function spaces

If X is a set and Z is an ordered set, the set of functions (X → Z) is regarded as
an ordered set with the argumentwise ordering: f ≤ g ≡ (∀ x ∈ X : f.x ≤ g.x). If
Z is complete, (X → Z) is complete and the least upper bounds and greatest lower
bounds in (X → Z) can be obtained argumentwise. If Z is completely distributive,
then so is (X → Z).

If X and Z are ordered sets, the set of the monotone functions from X to Z
is denoted by (X m−→ Z). It is easy to see that least upper bounds and greatest
lower bounds of monotone functions are monotone. Therefore, if Z is complete (or
completely distributive), the subset (X m−→ Z) of (X → Z) is by itself complete
(completely distributive, respectively), and the injection of (X m−→ Z) into (X → Z)
is junctive.

If X is a set, its power set P.X is identified with ordered set (X → B) via the
rule p.x ≡ (x ∈ p). Because B is completely distributive, P.X is also completely
distributive.

For an ordered setX, a function p ∈ P.X is monotone if and only if, as a subset, it
is up-closed (x ≤ x′ ∧ x ∈ p ⇒ x′ ∈ p). We therefore define U.X = (X m−→ B) to
be the set of the up-closed subsets or monotone elements of P.X. For any a ∈ X, we
define up.a = {x ∈ X | a ≤ x} ∈ U.X. For every ordered set X, the ordered set U.X
is completely distributive. Note that the function up : X → U.X is antimonotone
and, in general, not monotone. This is the reason that Morris [36, 4.2] gives his set
UX the opposite order, so that UX = (U.X)◦.

2 Free Distributive Completions of Ordered Sets

A free distributive completion (FDC) of an ordered setX is defined to be a monotone
function f from X to a completely distributive set Y such that, for every monotone
function g from X to a completely distributive ordered set Z, there is a unique
junctive function h : Y → Z with g = h ◦ f [36,43].
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We present an internal characterization of an FDC ofX in Section 2.1. In Section
2.2, we prove Tunnicliffe’s result [43] that every ordered set has an FDC, which
is essentially unique. We compare our presentation with the work of Morris and
Tyrrell in Section 2.3. In Section 2.4, we use that every monotone function on X
has a unique junctive extension to the FDC of X. This extension or lifting plays a
crucial role later on. In Section 2.5, we show self-duality of the FDC concept: the
dual of an FDC of X is an FDC of the dual of X.

2.1 Axioms for an FDC

We start with an axiomatic characterization of an FDC Y of an ordered set X in
terms of the ordered structures of X and Y , and their relationships. For the sake
of the argument, we define a function f : X → Y with Y completely distributive to
be an fd-completion if it satisfies the conditions

(fd0) y =
∨
{
∧
f∗.A | A :

∧
f∗.A ≤ y} for all y ∈ Y ,

(fd1)
∧
f∗.A ≤ f.x ≡ (∃ a ∈ A : a ≤ x) for all x ∈ X, A ∈ P.X,

(fd2)
∧
f∗.A ≤

∨
B ≡ (∃ y ∈ B :

∧
f∗.A ≤ y) for all A ∈ P.X, B ∈ P.Y .

Condition (fd0) expresses a kind of density. The inequality
∨
{
∧
f∗.A | A :∧

f∗.A ≤ y} ≤ y holds trivially. Therefore (fd0) just says that every y can be
approximated from below by terms of the form

∧
f∗.A.

Condition (fd1) is the only one that mentions the order of the set X (in the
right-hand side). The other two conditions only mention the order of Y . By taking
A := {x′} with x′ ∈ X, we see that condition (fd1) implies that function f is an
order embedding and, hence, monotone and injective. Taking for A the empty set,
we see that f.x 6= >Y for all x ∈ X, so that f is not surjective.

Condition (fd2) expresses a kind of atomicity of the terms
∧
f∗.A. Taking B := ∅

and A = {x}, it implies that f.x 6= ⊥Y for all x ∈ X.

Theorem 1. Let X be an ordered set and Y a completely distributive ordered set.
A function f : X → Y is a free distributive completion if and only if it is an
fd-completion.

Proof. The proof of “only if” is postponed to the end of Section 2.2.
Here, we only give the proof of “if”. Let f : X → Y be an fd-completion. In

order to prove that f is a free distributive completion, we need to factor an arbitrary
monotone function to a completely distributive ordered set Z over f and a junctive
function h : Y → Z. Let g : X → Z be a monotone function to a completely
distributive ordered set Z. If h : Y → Z is junctive with g = h ◦ f , then condition
(fd0) with junctivity of h and g = h ◦ f implies that, for all y,

(0) h.y =
∨
{
∧
g∗.A | A :

∧
f∗.A ≤ y} .

This proves uniqueness of h. In order to prove existence, we therefore define function
h : Y → Z by formula (0). It remains to prove that h ◦ f = g and that function h
is junctive.

The equality h ◦ f = g is proved by the observation that, for every x,

h.(f.x)
= { (0) }∨

{
∧
g∗.A | A :

∧
f∗.A ≤ f.x}

= { (fd1)}∨
{
∧
g∗.A | A : (∃ a ∈ A : a ≤ x)}

= { ≤ g.x because g is monotone, ≥ g.x from A := {x} }
g.x .
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For the verification that function h is junctive, we let B be a subset of Y .
Disjunctivity of h is proved in

h.(
∨
B)

= { (0) }∨
{
∧
g∗.A | A :

∧
f∗.A ≤

∨
B}

= { (fd2) }∨
{
∧
g∗.A | A : (∃ y ∈ B :

∧
f∗.A ≤ y)}

= { splitting joins }∨
y∈B

∨
{
∧
g∗.A | A :

∧
f∗.A ≤ y}

= { (0) }∨
y∈B h.y .

Since h is disjunctive, it is monotone and hence satisfies h.(
∧

y∈B y) ≤
∧

y∈B h.y.
The other inequality for conjunctivity is proved in∧

y∈B h.y

= { (0) }∧
y∈B

∨
{
∧
g∗.A | A :

∧
f∗.A ≤ y}

= { Z is completely distributive;
take R =

∏
y∈B{A |

∧
f∗.A ≤ y} }∨

r∈R

∧
y∈B

∧
g∗.(r.y)

= { definitions of
∧

and g∗; take Ar :=
⋃

y∈B r.y }∨
r∈R

∧
g∗.Ar

≤ { (*), see below }∨
{
∧
g∗.A | A :

∧
f∗.A ≤

∧
y∈B y}

= { (0) }
h.(

∧
y∈B y) .

Step (*) is justified by the observation for every r ∈ R, that
∧
f∗.(r.y) ≤ y for all

y ∈ B, and that therefore Ar =
⋃

y∈B r.y satisfies
∧
f∗.Ar ≤

∧
y∈B y.

This concludes the proof of conjunctivity of h, and thus of junctivity of h. 2

Remark. Once condition (fd0) has been postulated, the need for conditions like
(fd1) and (fd2) emerges naturally in the proof.

2.2 Construction of an FDC

Given an ordered set X, we now construct an fd-completion f : X → Y .
The heuristical starting point is (fd0), which says that every element y ∈ Y is

the least upper bound of the elements
∧
f∗.A that are below y, with A ranging over

the subsets of X. If a subset A is replaced by its up-closure {x | ∃ a ∈ A : a ≤ x},
the greatest lower bound

∧
f∗.A is unchanged when f is monotone. Therefore (fd0)

should remain valid when A only ranges over the set U.X; see Section 1.7. This
implies y =

∨
{
∧
f∗.A | A ∈ R(y)} for R(y) = {A ∈ U.X |

∧
f∗.A ≤ y}. We

notice now that R(y) determines the element y, and that it is an up-closed subset
of U.X, that is R(y) ∈ U.(U.X). We therefore try and construct the ordered set Y
as U.(U.X). Indeed, the ordered set U.(U.X) is completely distributive. Recall from
1.7, that in the set U.(U.X) we can use

⋃
and

⋂
for

∨
and

∧
.

Let j : X → U.(U.X) be defined by j.x = {K ∈ U.X | x ∈ K}. Indeed, for any
x ∈ X, we have j.x ∈ U.(U.X) because K ⊆ K ′ and K ∈ j.x implies K ′ ∈ j.x.

Theorem 2. For every ordered set X, the function j : X → U.(U.X) is an fd-
completion and, hence, also a free distributive completion of X.

Proof. In this proof, we let K (and K ′) always range over U.X. Function j is
monotone because for all x, x′ ∈ X,
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x ≤ x′

⇒ (∀ K : x ∈ K ⇒ x′ ∈ K)
≡ j.x ⊆ j.x′ .

We next observe, for any A ∈ P.X, that

(1)
⋂
j∗.A = {K | A ⊆ K} ,

because of

K ∈
⋂
j∗.A

≡ ∀ x ∈ A : K ∈ j.x
≡ ∀ x ∈ A : x ∈ K
≡ A ⊆ K .

In order to verify (fd0): y =
⋃
{
⋂
j∗.A | A :

⋂
j∗.A ⊆ y}, we first note that, when

A is replaced by its up-closure, the set
⋂
j∗.A = {K | A ⊆ K} does not change.

We can therefore change (fd0) by letting A range over the up-closed subsets of X.
For up-closed A, formula (1) implies that (

⋂
j∗.A ⊆ y) ≡ (A ∈ y). Formula (fd0)

therefore follows from

(2) y =
⋃
{
⋂
j∗.A | A ∈ y} ,

which is proved in

K ∈
⋃
{
⋂
j∗.A | A ∈ y}

≡ { definition union and (1) }
∃ A ∈ y : A ⊆ K

≡ { y up-closed }
K ∈ y .

We verify (fd1) by first observing for x ∈ X and A ∈ P.X that⋂
j∗.A ⊆ j.x ⇐ (∃ a ∈ A : a ≤ x) ,

because j is monotone. The other implication of (fd1) is proved in⋂
j∗.A ⊆ j.x ⇒ (∃ a ∈ A : a ≤ x)

≡ { (1) and definition of j }
(∀ K : A ⊆ K ⇒ x ∈ K) ⇒ (∃ a ∈ A : a ≤ x)

≡ { contraposition }
(∀ a ∈ A : a 6≤ x) ⇒ (∃ K : A ⊆ K ∧ x /∈ K)

≡ { take K0 := {z ∈ X | z 6≤ x} ∈ U.X }
true .

We verify condition (fd2) by first observing that the existence of y ∈ B with⋂
j∗.A ⊆ y clearly implies

⋂
j∗.A ⊆

⋃
B. The other implication is proved in⋂

j∗.A ⊆
⋃
B

≡ { (1) }
∀ K : A ⊆ K ⇒ K ∈

⋃
B

⇒ { take K1 := {x | ∃ a ∈ A : a ≤ x}, then K1 ∈ U.X }
∃ y ∈ B : K1 ∈ y

≡ { A ⊆ K ⇒ K1 ⊆ K for all K, and y ∈ U.(U.X) }
∃ y ∈ B : ∀ K : A ⊆ K ⇒ K ∈ y

≡ { (1) }
∃ y ∈ B :

⋂
j∗.A ⊆ y .

This proves that f is an fd-completion. As proved in the above partial proof of
Theorem 1, this implies that f is a free distributive completion. 2
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For any ordered set X, we write F.X = U.(U.X) and j : X → F.X for the
free distributive completion thus constructed. If necessary, we give j an index X
to indicate that it depends on X. One referee proposed to write U2 instead of F.
We prefer to use F, because we regard F = U2 as only one of several alternative
constructions of the free distributive completion. Indeed, the paper [38, Section 4.5]
following [43] contains two alternatives.

Because of (fd1), function j : X → F.X is an order embedding. It is never
surjective, because both the bottom element ⊥ and the top element > of F.X are
not in the image of j.

Example. Assume that X is finite and linear. Then U.X consists of the sets up.x
for x ∈ X and the empty set. Therefore, U.X is also finite and linear. Therefore
F.X is also finite and linear. It consists of the elements ⊥, >, and j.x with x ∈ X.

By a standard argument in category theory, the free distributive completion is
essentially unique:

Theorem 3. Let f : X → Y be a free distributive completion of an ordered set X.
Then there is a unique isomorphism g : Y ∼= F.X with j = g ◦ f .

Proof. For convenience, we do provide the standard argument. Since j : X → F.X
is monotone and f : X → Y is an FDC, there is a unique junctive function g : Y →
F.X with j = g ◦f . Since f is monotone and j is an FDC, there is a unique junctive
function g′ : F.X → Y with f = g′ ◦ j. The composition g′ ◦ g : Y → Y is junctive
and satisfies g′ ◦ g ◦ f = f , just as the identity function of Y does. Since f is an
FDC, this implies that g′ ◦ g is the identity function of Y . By symmetry, g ◦ g′ is
the identity function of F.X. Therefore, g and g′ are inverse to each other. So they
are isomorphisms. 2

Proof of “only if” for Theorem 1. Let f : X → Y be a free distributive comple-
tion. By Theorem 2, j : X → F.X is an fd-completion. By Theorem 3, there is an
isomorphism g : Y ∼= F.X with j = g ◦ f . One can now use the isomorphim g (and
its inverse g′) to show that f : X → Y is an fd-completion as well. 2

2.3 Comparison with the presentation of Morris and Tyrrell

Morris and Tyrrell [36,37,38] proposed the use of Tunnicliffe’s free distributive com-
pletion [43] to model dual nondeterminacy. The construction of the FDC in [36,38]
is a two-step procedure following [43].

Our conditions (fd0), (fd1), (fd2) were inspired by the proof theory of [36] and
[38, Section 3]. These papers contain condition (fd2) more or less literally, and
condition (fd0) in the form:

y ≤ y′ ≡ (∀ A :
∧
f∗.A ≤ y ⇒

∧
f∗.A ≤ y′) .

They do not mention condition (fd1). Yet, this condition cannot be omitted. Indeed,
let f : X ′ → X be an arbitrary surjective function. The composition g = j ◦ f :
X ′ → F.X satisfies the conditions (fd0) and (fd2) because of {

∧
g∗.B | B ∈ P.X ′} =

{
∧
j∗.A | A ∈ P.X}. Yet g is a free distributive completion only if f : X ′ → X is

an isomorphism of ordered sets.
Our characterizing conditions (fd0), (fd1), (fd2) enable us to simplify the con-

struction of the FDC, by combining it with the proofs of soundness and completeness
for these conditions.

In our view, the papers [36,37,38] suffer from the choice to treat X as a subset
of F.X, so that the elements of X and F.X need to be distinguished as “proper”
and “improper”, while the orders of X and F.X are distinguished as ≤ and v.
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2.4 Lifting to the FDC

The universal property in the definition of the FDC immediately induces the fol-
lowing definition of lifting. For any monotone function f : X → Z where Z is
completely distributive, the lifting ϕ.f of f is defined as the unique junctive func-
tion ϕ.f : F.X → Z with f = ϕ.f ◦ j.

Theorem 4. Let X, Y , and Z be ordered sets, and let Z be completely distributive.
Let f : X → F.Y and g : Y → Z be monotone. Then ϕ.f and ϕ.g are well-defined
and ϕ.g ◦ ϕ.f = ϕ.(ϕ.g ◦ f).

Proof. First, note that F.Y and Z are completely distributive. Therefore, ϕ.f :
F.X → F.Y and ϕ.g : F.Y → Z are well-defined. We have ϕ.g ◦ f : X → Z.
Therefore, ϕ.(ϕ.g ◦ f) is the unique junctive function F.X → Z with ϕ.g ◦ f =
ϕ.(ϕ.g ◦ f) ◦ jX . So, it suffices to observe that ϕ.g ◦ ϕ.f is junctive and satisfies
ϕ.g ◦ f = ϕ.g ◦ ϕ.f ◦ jX . 2

While the definition of liftings is based on the universal property in the definition
of the FDC, we can also use the construction F.X = U.(U.X) to interpret elements
y ∈ F.X as monotone functions y : U.X m−→ B, or up-closed subsets y ⊆ U.X.
Indeed, since ϕ.f is junctive and satisfies ϕ.f ◦ j = f , formula (2) implies, for all
y ∈ F.X, that

(3) ϕ.f.y =
∨
{
∧
f∗.K | K ∈ y} .

2.5 Duality

Recall that X◦ is the ordered set X with the opposite order. If X is completely
distributive then so is X◦. Any monotone function f : X → Y is also a monotone
function f : X◦ → Y ◦. The function f : X◦ → Y ◦ is conjunctive if and only if
f : X → Y is disjunctive; and conversely. Therefore f : X◦ → Y ◦ is junctive if and
only if f : X → Y is junctive. It follows that the free distributive completion is
self-dual:

Theorem 5. Let f : X → Y be a free distributive completion. Then f : X◦ → Y ◦

is a free distributive completion.

Proof. Let g : X◦ → Z be a monotone function to a completely distributive Z. Then
g : X → Z◦ is monotone and Z◦ is completely distributive. Because f : X → Y
is a free distributive completion, it follows that there is a unique junctive function
h : Y → Z◦ with g = h ◦ f . Consequently, h : Y ◦ → Z is junctive with g = h ◦ f ,
and it is the only junctive function with this property. 2

The combination of Theorems 1 and 5 yields:

Corollary 1. Let f : X → Y be a free distributive completion of an ordered set X.
Then f : X◦ → Y ◦ is an fd-completion, i.e, function f satisfies the duals of the
conditions (fd0), (fd1), (fd2).

Another consequence of Theorem 5 is that there is a canonical isomophism
ψ : F.X → (F.X◦)◦. Using j : X → F.X and j◦ : X◦ → F.X◦, we have ψ = ϕ.j◦.
Therefore, by (3), we have

ψ.y =
∨
{
∧
j∗◦ .K | K ∈ y} .

In this formula, the conjunction and disjunction are those of (F.X◦)◦. Using a set-
theoretical interpretation of F.X◦, we therefore get:
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ψ.y =
⋂
{
⋃
j∗◦ .K | K ∈ y} .

We have j◦(x) = {L ∈ U.X◦ | x ∈ L}. It follows that, for any L ∈ U.X◦,

L ∈
⋃
j∗◦ .K

≡ ∃ x ∈ K : x ∈ L
≡ L ∩K 6= ∅ .

We finally observe

L ∈ ψ.y
≡ { above results }

∀ K ∈ y : L ∩K 6= ∅
≡ { calculus }

∀ K : K ⊆ X \ L ⇒ K /∈ y
≡ { X \ L ∈ U.X; y is up-closed }

X \ L /∈ y .

This proves that the duality isomorphism ψ : F.X → (F.X◦)◦ satisfies

(4) ψ.y = {L ∈ U.X◦ | X \ L /∈ y} .

3 Alternating States

The elements of F.X are called alternating states in view of [9], or states (for
brevity). The elements of F.X of the form j.x for some x ∈ X are called proper
states.

In this section we concentrate on the properties of alternating states that re-
flect the particular construction of F.X chosen in Section 2.2. We therefore use the
operators

⋂
and

⋃
rather than

∧
and

∨
. In Section 3.1, we resolve a potential

ambiguity in the interpretation of states as functions. In 3.2, we determine neces-
sary and sufficient conditions for a state to be conjunctive, disjunctive, or junctive.
Section 3.3 is devoted to finitely conjunctive states.

3.1 The functional interpretation of states

An alternating state y ∈ F.X = U.(U.X) is a monotone Boolean function that can
be applied to elements p ∈ U.X. On the other hand, an element p ∈ U.X is a
monotone function X

m−→ B and has therefore a lifting ϕ.p : F.X → B, which can
be applied to alternating states y ∈ F.X. The two interpretations coincide since, for
every p ∈ U.X and y ∈ F.X, we have

(5) ϕ.p.y
≡ { (3) }∨

{
∧
p∗.K | K ∈ y}

≡ { ∃ and ∀ are
∨

and
∧

for B, definition p∗ }
∃ K ∈ y : ∀ x ∈ K : p.x

≡ { regard p as a subset }
∃ K ∈ y : K ⊆ p

≡ { y is up-closed }
p ∈ y .
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3.2 Junctivity of alternating states

An alternating state y ∈ F.X is an element of U.X m−→ B. We can therefore inves-
tigate its conjunctivity and disjunctivity.

Theorem 6. Let y ∈ F.X be regarded as a function y : U.X m−→ B.
(a) Function y is conjunctive if and only if y = {K | A ⊆ K} for some A ∈ P.X.
(b) Function y is disjunctive if and only if y = {K | K∩B 6= ∅} for some B ∈ P.X.
(c) Function y is junctive if and only if state y is proper.

Proof. (a) If y is conjunctive, the set A =
⋂
{K | K ∈ y} satisfies y.A = (∀ K ∈

y : y.K) = true, so that A ∈ y and hence {K | A ⊆ K} = y. Conversely, if
y = {K | A ⊆ K} for some A ∈ U.X, then (

⋂
iK.i ∈ y) ≡ (∀ i : K.i ∈ y) for any

family (i : K.i).
(b) If y is disjunctive, define B = {x ∈ X | up.x ∈ y}. Every K ∈ U.X satisfies

K =
⋃
{up.x | x ∈ K}, so that y.K = (∃ x ∈ K : up.x ∈ y) = (K ∩B 6= ∅), so that

y = {K | K ∩B 6= ∅}. Conversely, if y = {K | K ∩B 6= ∅} for some B ∈ U.X, then
(
⋃

iK.i ∈ y) ≡ (∃ i : K.i ∈ y) for any family (i : K.i).
(c) By (a) and (b), we have A and B with y = {K | A ⊆ K} = {K | K∩B 6= ∅}.

Put A′ = {x | ∃ a ∈ A : a ≤ x}. Then A ⊆ A′ and hence A′ ∈ y. Therefore, there is
some x ∈ A′ ∩B. Since x ∈ B, we have j.x ⊆ y. Since x ∈ A′, we have y ⊆ j.x. This
proves y = j.x, so that y is proper. Conversely, if y = j.x, part (a) with A := up.x
and part (b) with B := {x} imply that y is junctive. 2

According to (1), we have {K | A ⊆ K} =
⋂
j∗.A. Therefore, an alternating

state is conjunctive if and only if it is a meet of proper states. It can also be proved
that {K | K ∩ B 6= ∅} =

⋃
j∗.B. Therefore, an alternating state is disjunctive if

and only if it is a join of proper states.

3.3 Finitely conjunctive alternating states

An state y ∈ F.X is called finitely conjunctive if y.(
⋂
S) =

⋂
{y.K | K ∈ S} for

every finite set S of elements of U.X. Since y is monotone, i.e., an up-closed subset
of U.X, finite conjunctivity of y is equivalent to the conditions that X ∈ y and that
K ∩K ′ ∈ y for all K and K ′ ∈ y. Indeed, the first condition comes from empty S,
the second condition applies to pairs. The equality for bigger finite sets is proved
by mathematical induction.

Recall that an ordered set B is called directed iff it is nonempty and, for every
y, y′ ∈ B, there is some y′′ ∈ B with y ≤ y′′ and y′ ≤ y′′. We now show that finite
conjunctivity is preserved under directed unions and that every finitely conjunctive
element is a directed union of conjunctive ones.

Theorem 7. (a) Let B be a directed subset of F.X and assume that all y ∈ B are
finitely conjunctive. Then

⋃
B is finitely conjunctive.

(b) Let y ∈ F.X be finitely conjunctive. Then there is a directed set B of conjunctive
elements of F.X with y =

⋃
B.

Proof. (a) Firstly, X ∈
⋃
B since X ∈ y ∈ B for some y, because B is nonempty

and every y ∈ B is finitely conjunctive. Next, assume K and K ′ ∈
⋃
B. Then there

are y and y′ ∈ B with K ∈ y and K ′ ∈ y′. There is some y′′ ∈ B with y ⊆ y′′ and
y′ ⊆ y′′. Then both K and K ′ are in y′′. Since y′′ is finitely conjunctive, this implies
K ∩K ′ ∈ y′′ ⊆

⋃
B.

(b) Define r.A = {K ∈ U.X | A ⊆ K}. Then y =
⋃

A∈y r.A and each r.A is
conjunctive by Theorem 6(a). If A, B ∈ y, then r.A ∪ r.B ⊆ r.(A ∩ B). Therefore,
if y is finitely conjunctive, the set {r.A | A ∈ y} is directed. 2
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Example. The prototypical example is X = N with the discrete ordering. Let
f : N → F.X be given by f.n = {K | [n,∞) ⊆ K}. Then all states f.n are
conjunctive by Theorem 6. For k ≤ n, we have f.k ⊆ f.n. Therefore, the family
(n ∈ N : f.n) is directed, so that Theorem 7 implies that the alternating state
y =

⋃
n f.n is finitely conjunctive. The set y is the set of the cofinite subsets of N

(recall that U ⊆ N is called cofinite iff its complement N \ U is finite). It is easy to
see that, indeed, this set y is finitely conjunctive and not conjunctive. In this case,⋂
y = ∅. 2

4 Alternation in an Imperative Setting

We now apply the theory to imperative programming with operators for sequential
composition and demonic and angelic choice. Modifiers to specify state changes are
introduced in Section 4.1. In Section 4.2, we give the weakest precondition seman-
tics of modifiers, which turns out to be an order isomorphism that also preserves
sequential composition. In Section 4.3, we show that the duality of predicate trans-
formers corresponds to the duality of the FDC of Section 2.5. Section 4.4 contains a
proposal for a syntax for possibly recursive commands with semantics in an ordered
set X. Finally, in Section 4.5, we come down to imperative programming on an
unordered state space.

At this point, it is convenient to abstract from the specific representation of F.X
as a set of sets ordered by inclusion. We therefore use the ordinary lattice operations
∧,

∧
, ∨,

∨
rather than ∩,

⋂
, ∪,

⋃
. The smallest and largest states are denoted ⊥,

also called abort, and >, also called miracle, respectively.

4.1 Modifiers

We take modifiers as the generic term to specify steps that transform states from
a state space X into alternating states from a state space Y . The specification
may allow the steps a certain freedom (demonic choice) or may reckon with future
user requirements (angelic choice). The idea goes back to e.g. [3,35], and has been
exposed in the text book [4], which uses the term contract instead of modifier.

We define a modifier from state space X to state space Y to be a monotone
function X → F.Y . The set of the modifiers from X to Y is thus the ordered set of
the functions (X m−→ F.Y ). Since F.Y is completely distributive, (X m−→ F.Y ) with
the induced order is also completely distributive.

Sequential composition of modifiers c : X m−→ F.Y and d : Y m−→ F.Z is defined
by c; d = ϕ.d ◦ c : X m−→ F.Z. Using that ϕ.jX is the identity function of F.X, and
similarly for Y , one can easily verify that the modifiers jX form unit elements for
this operation in the sense that jY ; d = d, and c; jX = c. Sequential composition is
associative because for any c : X m−→ F.Y , d : Y m−→ F.Z, and e : Z m−→ F.W ,

(c; d); e = c; (d; e)
≡ { definition of sequential composition }

ϕ.e ◦ (ϕ.d ◦ c) = ϕ.(ϕ.e ◦ d) ◦ c
≡ { associativity of ◦ and Theorem 4 }

true .

In this way, the modifiers form a category with state spaces as objects and modifiers
as morphisms. Note that function ϕ gives an order isomorphism from the set of the
modifiers (X m−→ F.Y ) to the set of the junctive functions F.X → F.Y . Therefore,
alternatively, modifiers could have been defined as the elements of the latter set.
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4.2 Weakest precondition semantics

We now take the step to predicate transformers and weakest preconditions and show
that the ordered set of the modifiers from X to Y is isomorphic to the ordered set
of the monotone predicate transformers from U.Y to U.X.

Indeed, for arbitrary ordered sets X and Y , the ordered set of modifiers from X
to Y satisfies

(X m−→ F.Y ) = (X m−→ U.(U.Y )) = (X m−→ (U.Y m−→ B))
∼= (U.Y m−→ (X m−→ B)) = (U.Y m−→ U.X) ,

where the isomorphism comes from swapping the two arguments of curried func-
tions. This gives us an isomorphism wp : (X m−→ F.Y ) → (U.Y m−→ U.X) of com-
pletely distributive ordered sets. In order to see how function wp acts on modifiers,
we observe that any element c : X m−→ F.Y equals λx : λp : (p ∈ c.x). Equality (5)
therefore implies c = λx : λp : ϕ.p.(c.x). It follows that wp.c = λp : λx : ϕ.p.(c.x)
and hence wp.c.p = ϕ.p ◦ c. The predicate wp.c.p ∈ U.X is called the weakest
precondition for modifier c and postcondition p ∈ U.Y .

Remark. In [33,42], monotone predicate transformers are modelled by means of
up-closed multirelations, where a multirelation M is a subset of X × P.Y , which
is called up-closed if A ⊆ B and (x,A) ∈ M always implies (x,B) ∈ M . In other
words, a multirelation can be regarded as a function that associates to x an up-
closed subset of P.Y . If X and Y are now regarded as discrete ordered sets, an
up-closed multirelation is precisely the same as a function X → U.(U.Y ). With less
emphasis, the same point of view is expressed in Section 15.1 of [4]. Our treatment
here has the additional aspects that the state spaces can be ordered and that F.X
is the free distributive completion of X. 2

Function wp commutes with sequential composition in the sense that, for any
pair of modifiers c : X m−→ F.Y and d : Y m−→ F.Z, we have

(6) wp.c ◦ wp.d = wp.(c; d)
≡ { take arbitrary p ∈ P.Z }

wp.c.(wp.d.p) = wp.(c; d).p
≡ { definition wp and sequential composition }

ϕ.(ϕ.p ◦ d) ◦ c = ϕ.p ◦ (ϕ.d ◦ c)
≡ { Theorem 4, associativity of ◦ }

true .

This shows that wp is an isomorphism of ordered sets from X
m−→ F.Y to U.Y m−→

U.X that preserves composition.
The next result shows that, as one might expect, the junctivity properties of

wp.c are the same as the junctivity properties of the resulting states of modifier c.

Theorem 8. Let c : X m−→ F.Y . The predicate transformer wp.c is conjunctive
(disjunctive, finitely conjunctive), if and only if, for every x ∈ X, the resulting
state c.x ∈ F.Y is conjunctive (disjunctive, finitely conjunctive).

Proof. For any set of predicates B ∈ P.Y , we observe∧
p∈B wp.c.p = wp.c.(

∧
p∈B p)

≡ { definition wp }∧
p∈B ϕ.p ◦ c = ϕ.(

∧
p∈B p) ◦ c

≡ { equality of functions }
∀ x ∈ X :

∧
p∈B ϕ.p.(c.x) = ϕ.(

∧
p∈B p).(c.x)

≡ { formula (5) }
∀ x ∈ X :

∧
p∈B(c.x).p = (c.x).(

∧
p∈B p) .
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Therefore, conjunctivity of wp.c implies conjunctivity of all alternating states c.x,
and vice versa. The proofs for disjunctivity and finite conjunctivity are completely
analogous. 2

4.3 Duality for modifiers

For a modifier c : X m−→ F.Y , we can form the composition ψ ◦ c : X m−→ (F.Y ◦)◦,
which can also be regarded as the modifier ψ ◦ c : X◦ m−→ F.Y ◦. This is called the
dual modifier.

For a monotone predicate p ∈ U.X, we can form the negation or complement
¬ p ∈ U.X◦, and conversely. For any transformer m : U.Y → U.X, we can therefore
form the dual transformer ∼ m : U.Y ◦ → U.X◦ by (∼ m).p = ¬m.(¬p). In the
context of unordered state spaces, this dual is introduced as the conjugate m∗ in
[20].

The duality of transformers corresponds to the duality of modifiers, in the sense
that wp.(ψ ◦ c) = ∼(wp.c). This is proved by observing that, for any p ∈ U.Y ◦ and
x ∈ X,

wp.(ψ ◦ c).p.x = ¬wp.c.(¬ p).x
≡ { definition wp }

(ϕ.p ◦ ψ ◦ c).x = ¬(ϕ.(¬ p) ◦ c).x
≡ { definition of composition and (5) }

p ∈ ψ.(c.x) = ¬ p /∈ c.x
≡ { formula (4) }

true .

4.4 Commands

Up to this point, the ordered sets are the state spaces and the modifiers hold the
semantics of the commands. We now want to briefly introduce a command syntax
that allows recursive commands. Since we don’t want to complicate matters with
recursive domain equations, we fix a single ordered set X as the common state
space. We write M.X = (X m−→ F.X) for the ordered set of modifiers of X. Note,
however, that M.X is isomorphic to U.X m−→ U.X so that the latter space can be
used just as well.

We use the abstract syntax for commands introduced in [27]. Let A be a set of
symbols to be called commands. We assume that A contains all simple commands
and procedure names that may be needed. Starting from A, we define the class Cmd
of command expressions inductively by the clauses

– A ⊆ Cmd,
– if c and d ∈ Cmd then (c; d) ∈ Cmd,
– if (i ∈ I : c.i) is a family in Cmd then ( [] i ∈ I : c.i) ∈ Cmd and (♦ i ∈ I : c.i) ∈

Cmd.

If the family in the third clause is a pair, we use [] and ♦ is infix operators. Just as
in Section 1.1, they are the syntactic operators for the demonic and angelic choice,
respectively.

The semantics are expressed by means of the modifier set M.X. The semantic
function from the syntactic domain Cmd to M.X must primarily transform the
syntactic operators into the corresponding semantic ones. We therefore define a
function u : Cmd →M.X to be a homomorphism if and only if

u.(c ; d) = u.c ;u.d ,
u.( [] i ∈ I : c.i) =

∧
i∈I u.(c.i) ,

u.(♦ i ∈ I : c.i) =
∨

i∈I u.(c.i) .
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Every function f : A → M.X permits precisely one homomorphism f� : Cmd →
M.X with restriction (f�|A) = f , which is called the homomorphic extension of f .
In fact, f� is easily constructed inductively.

We assume that the set of commands A is the disjoint union of two sets S and H,
which may be infinite. The elements of S are called simple commands. We assume
that their semantics is given by a function sem0 : S →M.X. The elements of H are
called procedure names. Every h ∈ H is supposed to be equipped with a declaration
body.h ∈ Cmd.

We define sem1 : A→M.X to be the least solution u : A→M.X of the system
of equations (u|S) = sem0 and u.h = u�.(body.h). The semantics of a command
expression c is now defined by [[ c ]] = sem1�.c ∈M.X. For a command expression c
that does not contain procedure names, [[ c ]] is completely determined by sem0 and
the fact that sem1� is a homomorphism that coincides with sem0 on S.

We assume that S contains the set of the monotone functions X m−→ X and
the set of the monotone predicates U.X = (X m−→ B). For a monotone function
s ∈ (X m−→ X) ⊆ S the semantics is given by sem0.s = j ◦ s ∈ M.X. Let the
identity function of X be called skip. It follows that sem0.skip = j. We define
i : B m−→ F.X to be the order embedding given by i.false = ⊥ and i.true = >. For
a monotone predicate p ∈ U.X ⊆ S, the semantics is given by sem0.p = i ◦ p. If we
use conditional expressions like in the programming language C, it follows that

[[ skip [] p ]].x = (p.x? j.x : ⊥) ,
[[ skip ♦ p ]].x = (p.x?> : j.x) .

Command skip [] p is called the assertion of p and command skip ♦ p is called the
guard of ¬ p. Notice, however, that predicate ¬ p is antimonotone and is usually not
monotone.

4.5 The case of the discrete state space

We now specialize further by assuming that the order of the state spaceX is discrete.
This has the effect that all functions onX are monotone. In particular, we can assign
meanings sem0.f to all functions f ∈ X → X, and, for every predicate p ∈ P.X,
we can define ! p = (skip [] p) and ?p = (skip ♦¬ p). Either form can be used for the
construction of the conditional choice between command expressions c and d. The
usual definition is

if p then c else d end = (?p ; c [] ?¬ p ; d) .

According to [14, p. 176], this formula goes back to [32].
One can easily show that the same semantics is obtained by taking (! p; c♦ !¬ p ; d),

or, even simpler, by (p [] c)♦ (¬ p [] d) or (¬ p♦ c) [] (p♦ d).
Specializing further, we assume that the state space is spanned by a set V of

programming variables, and that every variable v ∈ V has values in the set (or
type) T.v. This means that X =

∏
v∈V T.v. For every variable v ∈ V , a state s ∈ X

has the component s.v ∈ T.v, which is regarded as the value of v in state s. If
r ∈ X → T.v for some v ∈ V , the assignment v := r is regarded as a denotation
of the function f ∈ X → X given by f.s.v = r.s and f.s.w = s.w for all variables
w 6= v. So, we have [[ v := r ]] = j ◦ f .

In the case of a discrete state space X, it holds that X◦ = X, so that the duality
function ψ has the type F.X m−→ (F.X)◦. One might conjecture that, in this case,
all fixpoints of function ψ are proper, but this is not the case, provided X has at
least three elements.
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Example. Assume that X has three elements. Then F.X has three different proper
states, say a, b, and c. One can verify that the alternating state y = (a ∨ b) ∧ (a ∨
c) ∧ (b ∨ c) satisfies ψ.y = y, but y is not proper. In total, F.X has 20 elements:
four self-dual ones a, b, c, y, and eight pairs of duals, like ⊥ and >, a ∧ b ∧ c and
a∨ b∨ c, etc. The easiest way to verify such assertions seems to be to represent F.X
as U.(P.X), where P.X is represented by means of bit vectors.

5 Conclusions

In comparison with [36], we have removed much of the terminology, like terms as
“join dense” and “completely join prime”, etc. By not regarding the state space
X a priori as an ordered subset of its free distributive completion (FDC), we have
obtained an axiomatization that characterizes the FDC. Indeed, Morris [36] explic-
itly states that the FDC is a model for his axioms, but he does not claim that his
axioms characterize the FDC.

The concrete construction of the FDC ofX as U.(U.X) where U.X = (X m−→ B),
offers relevant information for applications to programming semantics. It allows
purely state based semantics that combine the two opposite interpretations of non-
determinism, even in the presence of an order on the proper state space.

The FDC concept is self-dual, but the concrete construction is not. This con-
struction therefore induces a duality into the theory. This duality interchanges the
opposite interpretations of nondeterminism.

We have kept the theory general, so that it can be applied to various kinds of
semantic proposals, like functional, imperative, or process-algebraic.
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