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1 Introduction

Arnold Meijster, who wanted to recognize lines of characters in old manuscripts,
posed the following problem. Given an array of real numbers and an upper
bound, determine the maximal segments with variation below the upper bound,
in an efficient way. Here, the variation of a segment is the difference between the
maximum and the minimum value on the segment.

It turns out that there is a linear-time algorithm for this problem, and that this
algorithm uses the slightly unusual data structure of a two-sided queue. Actually,
it uses two such two-sided queues. This suggested a second algorithm that only
uses one two-sided queue to determine the maximal segments of bounded descent.
We derive the first algorithm in section 2, and present the second algorithm in
section 3.

To fix the notation, let x be the array, let N be the length of x, and let B be
the upper bound, according to the declaration:

const N ∈ N , B ∈ R { N ≥ 1 ∧B ≥ 0 } ;
const x ∈ array[N ] of R .

A segment is a subset of N of the form s(p, q) = {j | p ≤ j < q} with p, q ∈ N
and 0 ≤ p < q ≤ N .

2 Maximal Segments of Bounded Variation

The variation of a segment S is the difference varS(x) = maxS(x) − minS(x),
where maxS(x) = Max{x[j] | j ∈ S}, and minS(x) is defined similarly. We define
segment S to be BV-maximal if varS(x) ≤ B, and S = T for every segment
T ⊇ S with varT (x) ≤ B. The aim is to determine all BV-maximal segments.

Note that arbitrarily many BV-maximal segments can overlap. For instance,
let r ∈ N+, and let x[i] = B · i/r for all i. Then s(k, k + r + 1) is BV-maximal
for all k < N − r, and generally r + 1 of these segments overlap.

We propose to scan the array from left to right (from 0 to N), and to collect
the BV-maximal segments along the way. We therefore define BVS(n) to be the
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set of the pairs (p, q) such that s(p, q) is a BV-maximal segment of s(0, n). The
aim is to determine BVS(N).

We thus introduce variables

var n : N ;
var bs : set of N2 ;

and aim to establish the postcondition bs = BVS(N). This suggests the loop
invariant n ≤ N ∧ bs = BVS(n).

If (p, q) ∈ BVS(n) and p < q < n, then (p, q) ∈ BVS(n + 1). There is always
precisely one p with (p, n) ∈ BVS(n), but this pair need not be in BVS(n + 1)
because extension of s(p, n) to the right may be possible. We don’t want to
remove pairs from bs. We therefore abandon the suggested invariant, and instead
introduce an integer variable k, and postulate the loop invariant

J0: k < n ≤ N ∧ {(k, n)} ∪ bs = BVS(n) ∧ (k, n) /∈ bs .

This invariant is easily initialized. We thus get the following program to establish
the postcondition BVS(N) = bs.

(0) k := 0 ; n := 1 ; bs := ∅ ;
while n < N do

if (k, n + 1) /∈ BVS(n + 1) then
add (k, n) to bs ;
determine k with (k, n + 1) ∈ BVS(n + 1) fi ;

n := n + 1 ;
od ;
add (k, n) to bs .

This program uses so-called active finalization because the postcondition aimed
at is not implied by the conjunction of the invariant and the negation of the guard,
but is established from the postcondition of the loop by a simple assignment.

We now need additional data to remove the set BVS from the body of the
loop. In order to decide (k, n + 1) ∈ BVS(n + 1), we have to compare maxS(x)
and minS(x) for S = s(k, n+ 1). If (k, n+ 1) /∈ BVS(n+ 1), however, we have to
determine a new value for k, and for this we have to compare local maxima and
minima of array x that are more to the right than the old k. For each of these
local extrema, we need the rightmost occurrence.

We therefore introduce

var p, q, r, s : N ;
var mx,mn : array[N ] of N .

The elements of mx[p : q] serve as the indices of the rightmost local maxima of x
on the segment s(k, n) according to the invariant

2



J1: p ≤ q < n ∧ k ≤ mx[p] ∧ mx[q] = n− 1
∧ (∀ i : p ≤ i < q ⇒ mx[i] < mx[i + 1])
∧ (∀ j : k ≤ j < n ⇒ x[mx[p]] ≥ x[j])
∧ (∀ i, j : p ≤ i < q ∧ mx[i] < j < n
⇒ x[mx[i]] > x[j] ∧ x[mx[i + 1]] ≥ x[j]) .

Here, the first two lines express that mx[p : q] is a subsequence of the ordered
sequence of elements of s(k, n) that ends in n− 1. The third line says that mx[p]
is an index where the maximum of x on s(k, n) is attained. The fourth line
expresses that each mx[i] is the rightmost index of a local maximum for a new
stretch.

Similarly, the elements of mn[r : s] serve as the indices of the rightmost local
minima of x on the segment s(k, n) according to the invariant

J2: r ≤ s < n ∧ k ≤ mn[r] ∧ mn[s] = n− 1
∧ (∀ i : r ≤ i < s ⇒ mn[i] < mn[i + 1])
∧ (∀ j : k ≤ j < n ⇒ x[mn[r]] ≤ x[j])
∧ (∀ i, j : r ≤ i < s ∧ mn[i] < j < n
⇒ x[mn[i]] < x[j] ∧ x[mn[i + 1]] ≤ x[j]) .

In the diagram we sketch the meaning of these two invariants as bounding
the graph of x[k : n− 1] by rectangles. The bullets represent points (j, x[j]) with
j = mx[i] and j = mn[i]. The rightmost bullet has j = n− 1.

•
•

•

•
•

k n− 1

mn[r]

mx[p] mx[p + 1]

mn[r + 1]

The invariants J1 and J2 are easily initialized by

p := q := r := s := 0 ;
mx[0] := mn[0] := 0 .

Now assume that J1∧J2 holds at the start of the loop body. The incrementation
n := n + 1 asks for inclusion of n into the sequences mx and mn, and accommo-
dation of x[n] in the inequalities. We therefore propose commands rightMx and
rightMn that satisfy the Hoare triples

{ J1 } rightMx { J1[n := n + 1] } ,
{ J2 } rightMn { J2[n := n + 1] } .

In either case, first the superfluous part at the righthand side of the sequence mx
or mn is removed. Subsequently the number n is added to the sequence.
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rightMx:
while p ≤ q ∧ x[mx[q]] ≤ x[n] do q := q − 1 od ;
q := q + 1 ; mx[q] := n .

rightMn:
while r ≤ s ∧ x[mn[s]] ≥ x[n] do s := s− 1 od ;
s := s + 1 ; mn[s] := n .

After rightMx and rightMn, the extrema of x on s(k, n + 1) are at the indices
mx[p] and mn[r]. We therefore have

(k, n + 1) ∈ BVS(n + 1) ≡ mx[p] ≤ mn[r] + B .

If (k, n + 1) /∈ BVS(n + 1), we have to modify k. In this case, x[n] is one of the
two extrema because (k, n) ∈ BVS(n). Therefore, p = q or r = s. Now, from
the left, the maxima above x[n] + B have to be discarded, as well as the minima
below x[n]−B. Moreover, index k should be moved to the right of the rightmost
discarded extremum. This is done in the loops:

leftMx:
while x[mx[p]] > x[n] + B do

k := mx[p] + 1 ; p := p + 1 ;
od .

leftMn:
while x[mn[r]] < x[n]−B do

k := mn[r] + 1 ; r := r + 1 ;
od .

At this point, we have mx[q] = n = mn[s], so that the loops necessarily terminate
because B ≥ 0. Moreover, one of the loops stops immediately because of p = q
or r = s.

The complete program to determine the BV-maximal segments becomes

(1) k := 0 ; n := 1 ; bs := ∅ ;
p := q := r := s := 0 ;
mx[0] := mn[0] := 0 ;
while n < N do

rightMx ; rightMn ;
if x[mx[p]] > x[mn[r]] + B then

add (k, n) to bs ;
leftMx ; leftMn fi ;

n := n + 1 ;
od ;
add (k, n) to bs .
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The complexity of this program is linear in N . This is not completely obvious
because of the four inner loops in the body of the outer loop. It is shown by
means of the variant function vf = 3(N−n)+(q−p)+(s−r). Indeed, vf ≥ 0 at
the start of each of the loops. We have initially vf = 3(N − 1). The value of vf
decreases in every step of any of the inner loops. It also decreases with 1 in every
execution of the body of the outer loop, outside of the inner loops, because of the
assignments n := n+ 1, q := q + 1, s := s+ 1. Therefore, the time complexity of
the program is O(N).

The body of the main loop in (1) can be replaced by the following code:

if x[mx[p]] > x[n] + B then
add (k, n) to bs ;
q := q + 1 ; mx[q] := n ; leftMx ;
s := r ; mn[r] := n ;

elsif x[mn[r]] < x[n]−B then
add (k, n) to bs ;
s := s + 1 ; mn[s] := n ; leftMn ;
q := p ; mx[p] := n ;

else
rightMx ; rightMn

fi ;
n := n + 1 .

This is slightly more efficient than (1), because in the first two branches it makes
one of the queues empty in a single step, while the same is done in a loop in (1).

3 Bounded Descent

The descent of a segment S of array x is defined as

descS(x) = Max{x[i]− x[j] | i, j ∈ S : i < j} .

The descent of S is negative if and only if x is increasing on the segment. In this
case, however, the descent equals the maximum of the differences x[i] − x[i + 1]
over the segment, so that special methods apply. On the other hand, above we
have used the assumption B ≥ 0 implicitly several times. We therefore retain
this assumption.

Segment S is said to be of descent bounded by B if descS(x) ≤ B, or equiva-
lently if x[i] ≤ x[j]+B for all i, j ∈ S with i < j. Segment S is called BD-maximal
if descS(x) ≤ B and if S = T for every segment T ⊇ S with descT (x) ≤ B.

We now describe an algorithm to determine the set of all BD-maximal seg-
ments of array x. This algorithm closely resembles the algorithm for the BV-
maximal segments.
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Just as before, we define BDS(n) to be the set of BD-maximal segments of
s(0, n). We can retain invariant J0 and algorithm (0), when we replace BVS
by BDS. In view of the inequalities x[i] ≤ x[j] + B for i < j, we need only
to remember the (local) maxima of the past. We therefore only introduce the
auxiliary variables p, q, mx, and the invariant J1. The resulting algorithm to
determine the BD-maximal segments is

(2) k := 0 ; n := 1 ; bs := ∅ ;
p := q := 0 ; mx[0] := 0 ;
while n < N do

rightMx ;
if x[mx[p]] > x[n] + B then

add (k, n) to bs ;
leftMx fi ;

n := n + 1 ;
od ;
add (k, n) to bs .

Of course, the complexity of (2) is again linear.
For the sake of testing this algorithm, we needed an algorithm to determine

the descent of a segment s(k, n), given by

descs(k,n)(x) = Max{x[i]− x[j] | i, j : k ≤ i < j < n} .

It is a good exercise for first-year students computer science to design a program
to compute this in linear time.

In conclusion: I did not know these algorithms but I cannot claim they are
new. It is a nice occasion to write them down as a birthday present for Jan van
Leeuwen.
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