Safety = invariants + history variables

Wim H. Hesselink, whh472, September 4, 2012

Dept. of Computing Science, University of Groningen
P.O.Box 407, 9700 AK Groningen, The Netherlands

1 Introduction

Recently, I wrote in some paper that safety properties can be verified by restricting
the attenttion to current and next states. A reviewer of the paper found the claim
a bit dubious, and would restrict it to safety properties that can be expressed in
terms of invariants. Indeed, my gut feeling had been that all safety properties can
be expressed in terms of invariants.

In this note, I explain that my gut feeling was wrong: invariants alone are not
enough to specify all safety properties. Yet, it becomes true if one allows the intro-
duction of history variables.

2 The definition of safety

Let M = (X, A, N) be a state machine [1]. Here, X is the state space, A C X is
the set of initial states and NV is the next state relation, which is supposed to be
reflexive. An ezxecution of M is an infinite sequence of states xs € X with xsg € A
and (xS, xSp41) € N for all n € N, i.e., an element of

Exec.M =[A]NO[N], .

A subset D C X is called an invariant iff D contains all elements of all executions
of M, in other words, iff Exec.M C O[D].

Recall that L C X“ is called a property [1] iff xs € L implies ys € L for every
stutter equivalent pair of sequences xs, ys. Unions and intersections of properties
are properties. If U is a subset of X, then [U] is a property. If R is a reflexive
relation on X, then O[R], is a property. As the next state relation NNV is required
to be reflexive, it follows that the set Exec.M is a property.

For xs € X¥ and n € N, we write (xs|n) for the finite sequence of the first n
elements of xs. For xs € X“ and a subset L of X% we say that xs is a limit point
of L iff for every n € N there is ys € L with (xs|n) = (ys|n). The set L is defined
to be closed iff it contains all its limit points. It is well-known, and easy to prove,
that every intersection of closed sets is closed. If U is a subset of X, then [U] and
O[U] are closed. If R is a relation on X, then [R], and O[R], are closed.

The set L is called a safety property [1] iff it is a closed property. It follows that
exec.M is a safety property, and that O[U] is is a safety property for every subset
U of X.

Example. Consider a state machine M = (X, A, N) for which the state space
contains an integer variable k. For a state x € X, we write x.k for the value of k in
state x. Let L be the subset of X% of the state sequences in which the values of k
never differ by precisely 1. So we have

xseL = (Vi,j:xsi.k#1+xs.j.k).

The set L is a property because adding or removing stuttering does not change
membership of L. It is also easy to verify that the set L is closed. It is therefore a
safety property.

At this point, we know nothing about the state machine M that we can use
to contruct an invariant D such that L is expressed by O[D]. This shows that
invariants alone are not enough to specify safety properties. Of course, one can
postulate the invariant D that k is odd. Then O] D] implies L, but this invariant
is clearly overspecific. End of example.

Safety properties are determined by their “treatment” of finite prefixes in the
following way. If hs is a nonempty finite list, we write hs™ for the infinite list
obtained by concatenating hs with the infinite repetition of its last element.

Let L be a safety property, and xs € L, and n € N. The infinite list ys =
(xs|n+1)T is a limit point of L, because we can approximate ys arbitrarily close by
letting xs stutter at time n sufficiently often. This stuttering remains in L because
L is a property. It follows that ys € L because L is closed. We define L™ to be the
set of the nonempty finite sequences hs such that hs™ € L. Using that L is closed,
we obtain that L = {xs |V n: (xsjn+1) € L™ }.

3 History variables

History variables [1] are auxiliary variables that have no role in the algorithm, but
that serve in the specification or the proof of the algorithm. They are also called
auxiliary variables [2] or ghost variables.

Let M = (X,A,N) be a state machine and let H be the type of the history
variable h we want to introduce in M. For this purpose, we choose an initialization
function ¢, : A — H and an update function ¢ : H x X x X — H. We then form
the extended state machine M’ = (X x H, A, N') where A’ = {(a,¢,(a)) | a € A}
and the extended next state relation N’ is given by

((x,h), (/W) e N' = (z,2)e N N KW =(@x#2?p(h,z,2"):h).

Note that we keep A’ = h in the case that 2’ = z, because of the convention of
[1] that the next state relation must be reflexive. Machine M’ is called the history
extension of M.

Let 7 : X x H — X be the projection on the first component which forgets h. For
every execution xs of M, there is a unique execution ys of M’ with xs.i = w(ys.i) for
all i € N. On the other hand, every execution ys of M’ corresponds to an execution
of M in this way. The history variable h records the history of the execution of M,
as specified by means of functions ¢, and ¢.

We can now specify an arbitrary safety property L of M in the following way.
We take H to be the set Xt of nonempty finite sequences of states. We take ¢, and
¢ to be given by ¢y(a) = (a), and ¢(h,z,z") = (h; (') where () is the singleton
constructor and “;” is list concatenation. Let xs be an execution of M. Let ys be
the corresponding execution of the history extension M’ constructed. At any time
n, the value of the history variable h of ys.n equals the stutterfree list obtained by
unstuttering the prefix (xs|n + 1). The safety property L is therefore expressed by
the invariant on machine M’ given by h € L™.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput.
Sci., 82:253-284, 1991.

2. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Inf.,
6:319-340, 1976.

