
Reentrant locking

Wim H. Hesselink (whh582)

March 4, 2022

1 Introduction

A reentrant lock, also called a recursive mutex, is a synchronization primitive that
can be used to protect shared data from being simultaneously accessed by multiple
threads. It offers slightly more functionality than an ordinary lock, in that it allows
the owner of the lock repeated calls of the lock. The ownership ends when the owner
makes a matching number of calls to unlock.

As with an ordinary lock, when it is free, the first thread that calls the lock
becomes the owner. When the lock is owned by a thread, other threads that call
the lock will block and wait until the lock is free again.

The problem of locking is known as mutual exclusion. Following its introduction
by E. W. Dijkstra [1], it can be described as follows. Given is a system of concurrent
threads that each execute a loop of the form

loop of thread p :
NCS ; lock() ; CS ; unlock()

end loop .

NCS stands for the noncritical section, a program fragment that need not terminate.
CS stands for the critical section. The problem is to implement the procedures lock
and unlock in such a way that there is never more than one thread in CS. Let us
call this the looping specification (L).

Specification (L) is quite satisfactory for many purposes. It is, however, inad-
equate for specifying reentrant locking as a generalization of locking, because the
setting precludes multiple calls of lock. The definition of mutual exclusion must
therefore be reconsidered before reentrant locking can be treated.

Comparable specifications of locks and reentrant locks are proposed in Section
2. Section 3 briefly sketches the role of reentrant locks for synchroonization in
the programming language Java. Section 4 discusses how an ordinary lock can be
converted into a reentrant one.

Acknowledgement. I am grateful to Dave Dice, who proposed the problem
and later pointed to the difficulties for the implementation.

2 Specifying locks and reentrant locks

For ordinary locking, the following specification (3R) is proposed. The lock has a
state function mu of type thread ∪ {⊥}, where ⊥ stands for not-a-thread. Initially
mu = ⊥. Informally speaking, the value of mu is the thread that owns the lock. For
the sake of the specification, the functions lock and unlock get the identifier of the
calling thread as an argument. There are three requirements:

1. The procedures lock and unlock satisfy the wait-free Hoare triples:

1



whh582 – 2

{mu = ⊥} lock(p) {mu = p} ,
{mu = p} unlock(p) {mu = ⊥} .

2. Any call lock(p) with the precondition p 6= mu 6= ⊥ blocks, and thread p waits
until mu = ⊥ holds.

3. If lock(p) is called with precondition mu = p, or unlock(p) is called with
precondition mu 6= p, the result is undefined (an exception can be raised).

The specifications (L) and (3R) are equivalent. Indeed, if the lock satisfies (L),
one can introduce a ghost variable mu, and can insert an assignment mu := p as
a final command of lock, and an assignment mu := ⊥ as an initial command of
unlock. This implies the requirements 1 and 2. Requirement 3 makes explicit that
the setting of (L) does not allow calls as mentioned in this requirement. Conversely,
if a lock satisfying (3R) is used in the loop of (L), requirements 1 and 2 imply
mutual exclusion.

Specification (3R) specifies the unfair lock. One can introduce fairness for the
lock by means a set or queue of waiting threads with an indication of the waiting
thread(s) preferred for the next ownership. This matter of fairness is orthogonal to
the aspect of reentrance. It can therefore be ignored for the present purposes.

The reentrant lock is specified by means of two state functions mu and level.
Function mu has the same type, role, and initialization as above. Function level

holds a natural number, initially 0. If positive, it holds the number of times thread
mu must call unlock to open the lock. Let us use the names re-lock and re-unlock
for the two procedures of a reentrant lock. There are four requirements:

1. mu 6= ⊥ ≡ level > 0 .

2. The procedures re-lock and re-unlock satisfy the wait-free Hoare triples:

{mu = ⊥} re-lock(p) {mu = p ∧ level = 1} ,
{mu = p ∧ level = k} re-lock(p) {mu = p ∧ level = k + 1} ,
{mu = p ∧ level = 1} re-unlock(p) {mu = ⊥} ,
{mu = p ∧ level = k > 1} re-unlock(p) {mu = p ∧ level = k − 1} .

3. Any call re-lock(p) with the precondition p 6= mu 6= ⊥ blocks, and thread p
waits until mu = ⊥ holds.

4. If re-unlock(p) is called with precondition mu 6= p, the result is undefined (an
exception can be raised).

It follows that the reentrant lock behaves as an ordinary lock as long as no owner
of the lock calls re-lock.

3 Synchronization in Java

The programming language Java has a keyword synchronized, see Java Language
Specification, Chapter 17. It has synchronized statements and synchronized meth-
ods. In either case, there is an associated lock and the body of the statement or
method is executed only after the acting thread has obtained the lock. When the
body has terminated, the associated unlock is called. As a synchronized method
may call another method synchronized by the same lock, this description requires
the lock to be reentrant.

If the lock is reentrant, correctness is implied by the observation that the fol-
lowing four assertions are equivalent:



whh582 – 3

mu = ⊥
≡ level = 0
≡ the number of performed lock operations equals the number

of performed unlock operations of the lock
≡ every synchronized action of the lock has terminated.

4 Implementation

There are several ways to convert an ordinary lock into a reentrant one. The simplest
way is to use shared variables mu and level, and to closely follow the specification.
Jonas Oberhauser proposed the following variation, which may be somewhat more
efficient. It uses shared variables mu and lev:

initially: mu = ⊥ ∧ lev = 0 .

re-lock(p) =
if p = mu then lev++

else
lock(p) ;
mu := p

endif .

re-unlock(p) =
assert(p = mu) ;
if lev = 0 then

mu := ⊥ ;
unlock(p)

else
lev--

endif .

The state function level is given by the equality

level = lev + (mu = ⊥ ? 0 : 1) .

It is then straightforward to show that, if the pair lock, unlock satisfies the speci-
fication of an ordinary lock, the pair re-lock, re-unlock satisfies the specification of
a reentrant lock.

There is, however, one subtle complication. The variable mu is written always
under protection of the lock, but it can be read by a thread p when p does not own
the lock. In this case, the test p = mu should return false. If it does not, somehow
the reading of mu returns the value p, either out of the past of the lock, or out of
the blue. It seems that, with this mixed access mode of mu, such a false positive
cannot be ruled out completely, because the semantics of locking do not cover these
cases. So, the result may depend on processor, platform, threading system, and
programming language.

If such false positives cannot be precluded, there is the alternative to give every
thread a private set (list) owning of lock identifiers and replace the test p = mu by
the test lock ∈ owningp. This approach would be preferred for Java, because its
virtual machine does track the locks held by a thread in order to release them when
the thread dies or throws an exception out of a synchronized region. In practice
most threads hold only a few locks, so the lists are short and not bad to search.



whh582 – 4

References

[1] E.W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 8:569, 1965.


