Dilation with diamonds

Wim H. Hesselink, whh586 Bernoulli Institute, University of Groningen

April 20, 2022

The one-dimensional dilation of sequence s with window size w is defined as the sequence

$$
D_1(w)(s) = (\lambda n : \max\{s(i) | n - w < i \leq n\}) \; .
$$

Sequence s is supposed to be a finite sequence, that starts with index 0. Assume $s(n) \geq 0$ for all indices n in the domain of s. We take $s(i) = -1$ for all indices outside the domain.

The rectangular two-dimensional dilation of image m with a window of size (v, h) is defined as the image $D_2(v, h)(m)$ given by

$$
D_2(v, h)(m)(y, x) = \max\{m(j, i) | y - v < j \le y \land x - h < i \le x\} .
$$

Here m is regarded as a function with integer arguments, with the value -1 if one of its arguments is negative or too large.

We can regard m as a sequence of sequences ("currying") and identify $m(y, x) =$ $m(y)(x)$. Then

$$
D_2(v, h)(m)(y, x)
$$

= $\max \{ \max \{ m(j)(i) \mid x - h \le i \le x \} \mid y - v \le j \le y \}$
= $D_1(v)(\lambda j : D_1(h)(m(j))(x))(y)$.

This reduces the computation of D_2 to computations of D_1 .

Let the distance function d_1 on the plane be defined by the L^1 -norm given by $||u|| = |u_1| + |u_2|$, so that $d_1(u, v) = |u_1 - v_1| + |u_2 - v_2|$. For a given grid point u and radius r, the disk $\{v \mid d_1(v, u) \leq r\}$ is a "diamond", i.e., a square with the diagonals parallel to the coordinate axes. This can be compared with the L^{∞} -norm given by $||u||_{\infty} = \max(|u_1|, |u_2|)$, with its associated distance function d_{∞} . Its disk $\{v \mid d_{\infty}(v, u) \leq r\}$ is a square with edges parallel to the coordinate axes.

We now aim at the dilation with diamonds as structural elements. This means, for given image m , radius r , and grid points u , to compute the dilation

(0)
$$
dil(r, m)(u) = \max\{m(v) | v : d_1(u, v) \le r\}.
$$

To visualize the geometry, the coordinate u_1 or y is considered vertical and downward, and u_2 or x is considered horizonal and growing to the right. The positive quadrant therefore lies to the south-east of the origin.

The linear transformation A of the plane given by $A(y, x) = (y + x, -y + x)$ transforms the L^1 into the L^{∞} norm because it satisfies

(1)
$$
||A(u)||_{\infty} = ||u||_1
$$

because of

$$
||A(y,x)||_{\infty} = \max(|y+x|, |-y+x|)
$$

= $\max\{y+x, -y-x, -y+x, y-x\}$
= $\max(y,-y) + \max(x,-x) = |y| + |x| = ||(y,x)||_1$.

In fact, A is a clockwise rotation over an angle of 45%, followed by a multiplication In fact, A is a clockwise rotation over an angle of 45%, followed by a multiplication with a factor of $\sqrt{2}$, to keep the grid invariant. Next, a translation is introduced to keep the sequences within the positive quadrant.

For the latter purpose, assume that image m is contained in a rectangle R of size $N \times M$, i.e., satisfies

$$
m(y, x) \neq -1 \Rightarrow 0 \le y \le N \land 0 \le x \le M .
$$

Here inequalities \leq are used to have the vertices in the image. Indeed, the vertices of rectangle R are, clockwise, $(0, 0)$, $(0, M)$, (N, M) , $(N, 0)$.

Now use the transformation F that consists of application of A followed by a translation over $(0, N)$. Then F is given by

$$
F(y,x) = (x+y, x-y+N) .
$$

The transformed rectangle $F(R)$ has the vertices $(0, N)$, $(M, M + N)$, $(M + N, M)$, $(N, 0)$. A straightforward calculation shows that

(2)
$$
(q,p) \in F(R) \Rightarrow -N \leq q-p \leq N \land N \leq q+p \leq 2 \cdot M+N.
$$

It follows that $F(R) \subseteq R'$ where R' is the square that consists of the grid points (q, p) with $0 \leq q \leq M + N \land 0 \leq p \leq M + N$.

Function F satisfies $d_1(u, v) = d_\infty(F(u), F(v))$ because of formula (1). This implies that the diamond around (y, x) with radius r is transformed into the square around $F(y, x)$ with L[∞]-radius r. We can therefore apply the rectangular twodimensional dilation to the transformed image, followed by a transformation backward.

The only complication is that, roughly speaking, half of the grid points of the transformed diamond are not images of grid points. Indeed, let a grid point (y, x) be called *even*, or *odd*, iff $y + x$ is even, or odd, respectively. If N is even (or odd), function F transforms all grid points into even (odd) ones.

The program therefore first ensures that all grid points of square R' that are not transformed grid points of rectangle R hold the lowest possible value -1 . It then transforms the image m into m' , applies the rectangular dilation D_2 of m' with squares of size $2 \cdot r + 1$ as structural elements, and finally transforms backward, with a translation along (r, r) to get the dilation value d in the centers of the diamonds.

(3) for each $u \in R'$ do $m'(u) := -1$ endwhile; for each $v \in R$ do $m'(F(v)) := m(v)$ endwhile ; $d' = D_2(2 \cdot r + 1, 2 \cdot r + 1)(m')$; for each $v \in R$ do $d(v) := d'(F(v) + (r, r))$ endwhile.

It remains to remove as much redundant computation as possible. Firstly, the computation of D_2 can be restricted to the transformed rectangle $F(R)$ with its bounds given by formula (2). This is a reduction of $(N + M)^2$ grid points to $2 \cdot N \cdot M$ grid points. When this has been done the same reduction can be applied to the first line of (3).