
Whamsort: an improved version of mergesort

Arnold Meijstera,∗, Wim H. Hesselinka

aBernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Nijenborgh 9, 9747 AG, Groningen, The
Netherlands

Abstract

The classical sorting algorithm mergesort is made more efficient by choosing a more appropriate merge
procedure. Subsequently, a variation of the algorithm, called whamsort, is proposed, that in general is
slightly more efficient than mergesort, but that is much more efficient when the input array is nearly sorted.
Its worst-case time complexity ranges from linear for sorted input to order N logN for random input.

Keywords: sorting, mergesort, time complexity, correctness

1. Introduction

This short note has two messages. First, when
the merge routine of the classical mergesort algo-
rithm is replaced by a more efficient one, the time
complexity of mergesort becomes linear for sorted
input arrays. Secondly, it proposes whamsort, a
variation of mergesort that, in general, performs
as good or better than mergesort, but significantly
better when applied to (nearly) sorted arrays.
To make this note self-contained, the mergesort

algorithm is presented in section 2. In section 3 an
improved version of the merge routine is presented
which makes that the time complexity of merge-
sort becomes linear for sorted inputs. Whamsort
is proposed in Section 4. In Section 5, it is proved
that whamsort has a worst-case time complexity of
the order of Θ(N logN). Section 6 briefly discusses
some related algorithms. Section 7 compares the
performance on an ordinary PC. Section 8 draws
conclusions.

2. Classical mergesort

This section presents the classical mergesort al-
gorithm, which closely follows the exposition in [2,
section 2.3.1]. In the following, the array to be
sorted in ascending order is denoted x, and consists

∗Corresponding author

Email addresses: a.meijster@rug.nl (Arnold
Meijster), w.h.hesselink@rug.nl (Wim H. Hesselink)

of N items of some type with an ordering operation.
For simplicity, in this paper, x is assumed to be an
integer array. We write x[p, q) for the sequence of
the elements x[i] with the integer index i ranging
in p ≤ i < q.
The mergesort algorithm uses an auxiliary

(scratch) array y of the same type and size as x,
and a global call that hides the allocation of y and
the recursion parameters:

procedure sort(N : int, var x[] : int);
var y[N] : int; // allocate scratch memory
mergesort(0, N, y, x);

end procedure;

The procedure call mergesort(p, q, y , x), sorts the
subsequence x[p, q) using y as scratch memory. If
the subsequence contains more than one element
(i.e. q − p > 1) then mergesort splits it into two
parts, applies mergesort recursively on the parts,
and finally merges the sorted subsequences using
the routine merge.

procedure mergesort(p, q, y[] : int; var x[] : int);
if q − p > 1 then

var m : int;
m := (p+ q) div 2;
mergesort(p, m, y, x);
mergesort(m, q, y, x);
merge(p, m, q, y, x);

endif
end procedure;

For sorted subsequences x[p,m) and x[m, q), the
call merge(p, m, q, y, x) (with p < m < q) merges

Preprint submitted to Elsevier June 15, 2023

x = . . . 1

p

4 6 7 2

q

5 8 9 3

r
. . .

y = . . . 1 4 6 7 2 5 8 9 . . .

x = . . . 1 2 4 5 6 7 8 9 3 . . .

Figure 1: Data movement in the standard mergesort algo-
rithm: merge(p, q, r, y, x).

these sequences into a sorted sequence x[p, q), using
y as scratch memory.

procedure merge(p, q, r, y[] : int; var x[] : int);
var i, j, k : int;
for i := p to r − 1 do

y[i] := x[i];
endfor;
i := p; j := q; k := p;
while i < q and j < r do

if y[i] < y[j] then
x[k] := y[i]; i := i+ 1;

else
x[k] := y[j]; j := j + 1;

endif ;
k := k + 1;

endwhile;
while i < q do

x[k] := y[i]; i := i+ 1; k := k + 1;
endwhile;
while j < r do

x[k] := y[j]; j := j + 1; k := k + 1;
endwhile;

end procedure;

It is well-known that the worst-case time com-
plexity of mergesort is Θ(N logN), which is opti-
mal for comparison sorting algorithms. However,
mergesort always performs the same number of split
and merge operations, regardless of the order of its
input.
Moreover, the call merge(p, q, r, y, x) often per-

forms redundant copying operations. It always
moves a total of 2·(r−p) data items, because it first
copies the entire subsequence x[p, r) to the scratch
memory y, and next moves these items from y back
to x. However, some elements need no copying at
all. For example, if x[p] ≤ x[q], then there is no
need to move the element x[p]. Figure 1 shows a
small example in which a total of 16 data move-
ments take place. In section 3 an improved version

x = . . . 1

p

4 6 7 2

q

5 8 9 3

r
. . .

y = 7 6 4 . . .

x = . . . 1 2 4 5 6 7 8 9 3 . . .

Figure 2: Data movement in the proposed merge algorithm:
merge(p, q, r, y, x).

of the merge routine is proposed that needs only 8
data movements for the same example.

3. An improved merge routine

In this section an improved version of the routine
merge is proposed. It is optimized in such a way
that, if merge need not move an element x[i], the
element is not involved in any assignment. The
array y is used as a stack with stack pointer sp. The
number of elements present in the stack is indicated
by the value of sp.

procedure merge(p, q, r, y[] : int; var x[] : int);
var sp, k : int;
sp := 0; k := q;
while p < k and x[q] < x[k − 1] do

k := k − 1; y[sp] := x[k] ; sp := sp+ 1
endwhile;
while sp > 0 do

if q < r and x[q] < y[sp− 1] then
x[k] := x[q] ; k := k + 1 ; q := q + 1;

else
sp := sp− 1 ; x[k] := y[sp] ; k := k + 1;

endif
endwhile

end procedure;

Note that short-circuit evaluation of guards is as-
sumed (i.e. the second conjunct of a conjunction
is evaluated only if the first conjunct evaluates to
true).

The first loop of the routine merge determines
the least index k (if existing) between p and q with
x[k] > x[q]. Moreover, the loop copies the seg-
ment x[k, q) with values that are greater than x[q]
to the stack y[0, sp) in reverse order to make room
for merging. Note that the loop terminates imme-
diately if x[q−1] ≤ x[q] which corresponds with the
situation that the entire segment x[p, r) is sorted.

2

In that case the loop terminates with sp = 0, which
means that the second loop will not be executed.
Figure 2 shows that, for the given example, only

three items are copied to y, while the original merge
routine copies eight items to y (see Fig. 1).

After termination of the first loop, it is clear
that p ≤ k ≤ k + sp = q ≤ r holds. More-
over, for p > k we have x[k − 1] ≤ x[q]. This
means that the bag of elements to be merged is con-
tained in the three subsequences x[p, k), x[q, r) and
y[0, sp). The elements of the subsequence x[p, k) are
already correctly placed. The second loop merges
the subsequences y[0, sp) and x[q, r) into x[k, r) in
a way which is similar to the standard merge rou-
tine. It maintains p ≤ k ≤ k + sp = q ≤ r and
x[k − 1] ≤ y[sp − 1] (for k > p). Once sp = 0, the
loop terminates and the remaining items in x[q, r)
are not moved at all. In figure 2 that would be
the situation in which q = r − 2, and the segment
x[q, r) = [8, 9].
This implementation of merge has the time com-

plexity Θ(r′ − p′ + 1), where p ≤ p′ ≤ r′ < r and

r′ = Max{j | x[j] < x[q − 1] ∨ j = q}
p′ = Min{i | x[q] < x[i] ∨ i = q}

For sorted input (i.e. x[q−1] ≤ x[q]), this reduces to
p′ = r′ = q which means that the time complexity
of the merge routine reduces to an O(1) operation.
As a result the time complexity of mergesort be-
comes linear in N for sorted input, while its worst
case time complexity remains Θ(N logN).

4. Whamsort

In this section whamsort, which is a variation on
mergesort, is introduced. The name whamsort is
derived from the initials of the authors.
While mergesort uses top down recursion, wham-

sort goes bottom up. The procedure call wham-
sort(p, q, y , x), sorts the subsequence x[p, q) using
y as scratch memory. In an initiating loop, it first
determines the longest sorted prefix of the input ar-
ray, i.e. it searches for the largest r (with p < r < q)
such that the subsequence x[p, r) is sorted. The
length of this prefix is r − p.

In a second loop, the value of r is incre-
mented while maintaining the property that x[p, r)
is sorted. The loop stops when r = q. At the be-
ginning of each iteration, the length of the sorted
prefix is l = r−p. The body of the loop tries to dou-
ble the size of the sorted prefix x[p, r) = x[p, p+ l)

to x[p, p+ 2 · l). The upperbound index of this ex-
tended prefix is assigned to the variable s, by setting
s = p+ 2 · l = p+ 2 · (r − p) = 2 · r − p. Clearly, if
s > q, the value is reset to s = q. Next, the algo-
rithm recursively sorts the subsequence x[r, s) and
merges the resulting sequence with the prefix x[p, r)
to obtain the sorted prefix [p, s). Next, the assign-
ment r = s maintains the invariant of the loop and
increases r. Note that, if the segment x[p, q) con-
tains less than two elements (i.e. q − p ≤ 1), the
procedure does nothing.

procedure whamsort(p, q, y[] : int; var x[] : int);
var r, s : int;
r := p+ 1;
while r < q and x[r − 1] ≤ x[r] do

r := r + 1
endwhile;
while r < q do

s := minimum(2 · r − p, q);
whamsort(r, s, y, x);
merge(p, r, s, y, x);
r := s ;

endwhile
end procedure;

5. Time complexity analysis of whamsort

In this section the time complexity of whamsort
is determined. Let N be the number of items in
the input array. Clearly, for a sorted input array
the first loop of whamsort performs N iterations,
and the second loop is not executed at all. Hence,
the best case time complexity is Ω(N). However,
its worst case time complexity is not immediately
obvious. In the following analysis it is shown that
the worst case time complexity of whamsort is
Θ(N logN). All logarithms are taken with base 2.
Clearly, the time complexity ofmerge(p, q, r, y, x)

is linear in the size of the subsequence x[p, r).
Moreover, if m is the length of the longest sorted
prefix of x[p, q), then the time complexity of the
first loop of whamsort is linear in m. Hence, we
may assume that there is a constant α such that
merge(p, q, r, y, x) performs at most α · (r − p) ba-
sic operations, and that the first loop of whamsort
performs at most α ·m operations.
Let c(n) be the maximal number of operations

that whamsort performs when called to sort x[p, q)
with q = p + n. We claim that c(n) ≤ 3 · α · f(n)
for all n ≥ 1, where f(n) = n · log(2 · n). This is
proved by induction. Clearly, the claim holds for

3

n = 1 because f(1) = 1. For the inductive step, it
is assumed that c(n) ≤ 3 · α · f(n) for all n < N .
One has then to prove c(N) ≤ 3·α·f(N) for N > 1.

Consider a call of whamsort on an array of length
N , say on x[0, N). Assume that m is the length
of the maximal sorted prefix of x[0, N). Then
0 < m ≤ N . We may assume m < N , because
the case m = N corresponds to the best case in
which the input is already sorted. Let k be the in-
teger exponent such that m · 2k < N ≤ m · 2k+1.
The second loop of whamsort performs k + 1 iter-
ations. In iteration i (with 0 ≤ i < k) it performs
a recursive call on the segments [m · 2i,m · 2i+1).
The last iteration performs a recursive call on the
segment [m · 2k, N). By the induction hypothesis,
these recursive calls contribute to c(N) at most

3 · α ·

(
f(N −m · 2k) +

k−1∑
i=0

f(m · 2i)

)
operations. The calls of merge in the second loop
contribute at most

α ·

(
N +

k−1∑
i=0

m · 2i+1

)
= α · (N + 2 ·m · (2k − 1))

operations. Moreover, the first loop of whamsort
contributes at most α · m operations. Taken to-
gether, α · (N + 2 ·m · (2k − 1)) + α ·m ≤ 3 · α ·N ,
because m · 2k < N . It remains to prove that

N + f(N −m · 2k) +
k−1∑
i=0

f(m · 2i) ≤ f(N),

because the lefthand side of this inequality mul-
tiplied by 3 · α is an upper bound of c(N). The
inequality can be rewritten as

N ≤ ∆

where ∆ = f(N)− f(N −m · 2k)−
∑k−1

i=0 f(m · 2i).

For real numbers x, y, with 0 < x ≤ y it holds

f(x+ y)− f(x)− f(y) ≥ 2 · x

because the lefthand expression is increasing in y,
and equals 2 · x if y = x. This formula is applied
with x = N−m·2k and y = m·2k. Note that x+y =
N . Moreover, x ≤ y because of N ≤ m · 2k+1. The
formula then gives that the value of ∆ satisfies

∆ = f(x+ y)− f(x)−
k−1∑
i=0

f(m · 2i)

≥ 2 · x+ f(y)−
k−1∑
i=0

f(m · 2i)

= 2 · (N −m · 2k) + f(y)−
k−1∑
i=0

f(m · 2i)

Hence, the proof requirement N ≤ ∆ reduces to

N −m · 2k+1 + f(y)−
k−1∑
i=0

f(m · 2i) ≥ 0

Since m · 2k < N , this inequality is surely satisfied
if we replace N by m · 2k, so it suffices to prove

m · 2k −m · 2k+1 + f(y)−
k−1∑
i=0

f(m · 2i) ≥ 0

Recall that y = m ·2k and that f(n) = n · log(2 ·n),
so all terms of this inequality have a common factor
m. Hence, after some calculus it reduces further to

2k · log(m · 2k+1)−
k−1∑
i=0

2i · log(m · 2i+1) ≥ 2k

which is equivalent to

2k · log(m)+ 2k · (k+1)−
k−1∑
i=0

2i · log(m · 2i+1) ≥ 2k

The third term can be rewritten as

k−1∑
i=0

2i · log(m · 2i+1)

=

k−1∑
i=0

2i · (log(m) + log(2i+1))

= log(m) ·
k−1∑
i=0

2i +

k−1∑
i=0

2i · (i+ 1)

= (2k − 1) · log(m) + (k − 1) · 2k + 1

In the last step of this derivation the identities∑k−1
i=0 2i = 2k−1 and

∑k−1
i=0 (i+1)2i = (k−1)2k+1

were used. Substitution of this result in the above
inequality yields after simplification that

log(m) + 2k+1 − 1 ≥ 2k

This inequality clearly holds, which concludes the
proof.

4

6. Related algorithms

In 1981, in EWD796a [3], Dijkstra proposed the
algorithm smoothsort which is a variant on heap-
sort. It has a worst-case time complexity of order
Θ(N logN) and an almost linear behaviour if the
input array is (almost) sorted. In the implementa-
tion of the algorithm, Dijkstra makes use of the so-
called Leonardo numbers L(n), which is a series of
numbers that resemble the Fibonacci series. How-
ever, these numbers grow very fast, which might
result in integer overflows for large inputs. A direct
implementation of the algorithm using standard 32
bit integers will fail due to integer overflow for array
with more than L(32) = 7049155 items. An imple-
mentation of smoothsort needs around 130 lines of
C-code, while mergesort and whamsort are much
simpler and both need less than 25 lines.
Currently, a popular sorting algorithm is timsort

named after its inventor Tim Peters. It has the
same best case and worst case time complexity as
whamsort. Timsort is the sorting algorithm used in
the standard library of the programming language
Python. Peters did not publish the algorithm in an
academic journal, but wrote an informal text on the
internet explaining the details of the algorithm [4].
A more precise description and a formal worst case
analysis was performed by Auger (in [1]). While
timsort is a hybrid algorithm that combines merge-
sort with insertion sort and other optimizations,
whamsort can be regarded as a straightened ver-
sion where insertion sort and other optimizations
have been removed.

7. Performance measurements

Timings were performed to compare the perfor-
mance of whamsort with (the improved) mergesort
and smoothsort. All algorithms were implemented
in C, and were compiled using gcc (version 12.2,
optimization level 3) on a PC with an Intel i7 pro-
cessor (2.8 GHz clock) and 16GB memory.
Measuring performance differences between algo-

rithms that have the same theoretical time com-
plexity is a daunting task. To reduce fluctuations
in the measurements, the best measurement out of
250 runs was taken for each algorithm. In table 1,
the results are shown for an input array that was
initialized with values that were generated by the
random number generator. The column labeled N
shows the number of items in the array, and the
column labeled time shows the execution time (in

N time merge wham smooth
105 9 1.15 1.19 0.57
106 104 1.14 1.15 0.51
107 1244 1.14 1.14 ?
108 14241 1.14 1.14 ?

Table 1: Sorting a random array of length N .

milliseconds) of the standard mergesort algorithm
(as published in [2]) for an array with N items. The
numbers in the remaining columns are speedups rel-
ative to the standard mergesort algorithm. For ex-
ample, a speedup of 1.14 means that an algorithm is
1.14 times faster than the standard mergesort algo-
rithm. It is expected that speedup measurements
are more stable with respect to compiler version
and increased speed of CPUs than absolute time
measurements. In the column merge the timings
are shown for the version of mergesort that uses
the improved merge routine from section 3. In the
columns wham and smooth the results for wham-
sort and smoothsort are given. The program for
smoothsort failed for N > 106 because of integer
overflow. In view of the other results for smooth-
sort it was decided not to fix this issue.

The measurements show that it pays off to re-
place the merge routine in mergesort by the im-
proved merge routine from section 3. The per-
formance increase is around 15%. Moreover, its
performance is never worse than the orginal algo-
rithm. As expected for random input, whamsort
and mergesort score (almost) equally well. Smooth-
sort is clearly slower than all the other algorithms.
This does not come as a surprise, because smooth-
sort is a variation on heapsort which has a much
lower locality of memory references than mergesort.
Especially on modern processors with caches, heap-
sort may result in frequent cache line misses, slow-
ing down its performance.

In table 2, the number of items in the input ar-
ray size is fixed at N = 4 × 106. This size was
chosen such that smoothsort still works without
overflow using standard 32 bit integer arithmetic.
Each row of the table is the mean of 100 measure-
ments. For each measurement, an input array x[]
is constructed by initially setting x[i] = i (for all
i), followed by the application of k swaps of ran-
domly chosen elements. Next, for that constructed
array, time measurements were performed in the
same style as for table 1 (best out of 100 runs for
each algorithm).

5

swaps time merge wham smooth
0 107 6.47 41.73 4.78
1 119 5.55 19.36 4.59
10 123 3.86 6.67 4.40
100 128 2.71 3.50 4.14

1000 135 2.13 2.47 4.10
10000 142 1.76 1.93 3.95
100000 166 1.47 1.47 1.67

1000000 300 1.22 1.18 0.55
4000000 457 1.17 1.14 0.44

Table 2: Sorting a random permutation of lengthN = 4×106

The time measurements were performed for k
ranging from 0 to N . Hence, the input array is
completely sorted for k = 0, while it is completely
unordered for k = N . The first column in table 2
shows the number of applied swaps. The remaining
columns show the same speedup information as in
table 1.

The standard mergesort algorithm recursively
splits the data, regardless of the order of the data
items. However, the number of comparisons made
in the merging phase is dependent on the structure
of the input and is minimal for sorted input. This
behaviour is clearly reflected in the column labeled
time of table 2. For completely sorted input, the
standard mergesort algorithm is almost four times
faster for sorted input than for random input.

The improved mergesort algorithm that uses the
merge routine from section 3 performs clearly better
on input that is nearly sorted. However, the algo-
rithm still recursively splits the data in the same
way as in the standard mergesort algorithm.

As expected, the whamsort algorithm is clearly
very effective on nearly sorted input. However, the
increase in speed drops quite quickly if randomness
is increased. Still, for an array in which around 1%
of the data items are out of order, whamsort is (al-
most) twice as fast as the standard mergesort algo-
rithm. Even though 1% seems to be small, there
are several applications that would benefit from
this performance increase. For example, in com-
puter graphics applications in which polygons are
rendered, it is crucial to determine which polygons
should be drawn first, as polygons that are closer
to the viewer should be rendered on top of those
that are farther away. This is necessary to ensure
correct occlusion when a three-dimensional scene is
rendered to a two-dimensional display. In interac-
tive graphics programs (like games), the position of

the viewer changes minimally from one frame to the
next frame, and as a consequence the list of poly-
gons to be sorted for rendering also changes mini-
mally. A change of less than 1 % is very common
in this scenario, so whamsort is expected to reduce
the time spent on sorting for this application.

In the last column of table 2, we see that smooth-
sort also performs better than mergesort if a small
portion of the data is out of order. In fact, for the
range k ∈ [100..100000], smoothsort turns out to be
the fastest algorithm. However, for larger k it per-
forms even worse than standard mergesort. Overall,
whamsort seems to be a better choice, because it is
always faster than standard mergesort, it can cope
with any array size, and scores well (albeit some-
times a bit less than smoothsort) on nearly sorted
inputs.

8. Conclusions

For mergesort it pays to optimize the merge pro-
cedure. If one does this, mergesort takes only linear
time on a sorted array.

The sorting algorithm whamsort, however, is
even more efficient, especially on nearly sorted ar-
rays. It is simple and it is stable. It could well be
the algorithm of choice if the input array has some
chance to be more or less sorted. For large random
arrays it performs well, even slightly better than
mergesort.

Dijkstra’s smoothsort algorithm also performs
well on nearly sorted arrays. However, for large un-
ordered input arrays, its performance drops below
the performance of standard mergesort. Moreover,
the algorithm is much more complex than the other
algorithms, and a correct implementation requires
integer arithmetic with extended precision in order
to avoid overflow.

References

[1] Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine
Pivoteau. On the Worst-Case Complexity of TimSort. In
26th Annual European Symposium on Algorithms (ESA
2018), volume 112, pages 4:1–4:13, 2018.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.
Introduction to Algorithms, 4th edition. MIT Press,
Cambridge, 2022.

[3] E.W. Dijkstra. Smoothsort, an alternative for sorting in
situ. Sci. Comput. Program., 1:223–233, 1982.

[4] T. Peters. Timsort description, accessed june 2023.
svn.python.org/projects/python/trunk/Objects/listsort.txt,
2002.

6

