
Puzzles of colored cubes

Wim H. Hesselink
whh595, January 22, 2023

Bernoulli Institute, University of Groningen, The Netherlands

1 Introduction

Recently, I read in a diary of mine an item of more than 50 years ago about solving
a puzzle with four colored cubes. I still had the cubes, but I did not remember
the puzzle. Today, we can search the internet. I found the puzzle in the wikipedia
item “instant insanity”, and read that the puzzle with four colored cubes was first
patented by F. A. Schossow in 1900 and marketed as the Katzenjammer puzzle. Let
me describe it in the generalized form where the number four is generalized to a
number H.

Each puzzle consists of H cubes with faces colored with H colors. The objective
of the puzzle is to stack these cubes in a column so that each side of the stack (left,
front, right, and back) shows each of the H colors.

2 Representation

One needs exhaustive search to solve this problem. Deviating from wikipedia, I do
not reduce the problem to a graph problem, but instead argue about the discrete
orientations of the cubes.

The first task is to represent a colored cube. Every cube
has 6 faces, numbered 0, . . . , 5. The horizontal faces left,
front, right, and back get the indices 0, 1, 2, 3, respectively.
The specification of the required column ignores the two
vertical faces top and bottom. These faces get the remaining
indices 4 and 5, respectively.

0 1 2 3

5

4

A colored cube is thus represented by an sequence of six colors. More precisely,
this is an oriented colored cube, because a cube can be rotated and then its faces
are permuted.

Assuming H ≤ 26, the colors are represented by subsequent capital characters
A, B, Let Col be the set of these H characters. So, the oriented colored cubes
are the elements of Col[6]. As the colors are characters, the oriented colored cubes
are strings of length 6. In particular, my set of four colored cubes can be represented
by the strings ACBDCC , ACDBDC , ABBCDD, ABBDCD, if A stands for green,
B for yellow, C for red, and D for blue. In general, every column of oriented cubes
is an sequence of H oriented cubes, and thus an element x ∈ Col[H][6]. Therefore,
my initial column is the sequence

(ACBDCC ,ACDBDC ,ABBCDD,ABBDCD).

A column x has two small faces at the top and the bottom, and four “tall”
faces of length H, with indices 0, 1, 2, 3. For 0 ≤ f < 4, the tall face of index f
has the contents x[∗, f] = {x[j][f] | 0 ≤ j < H}. Column x solves the problem iff
Pf (x) : x[∗, f] = Col holds for all f with 0 ≤ f < 4. The specification of the puzzle
is therefore the conjunction

P = P0 ∧ P1 ∧ P2 ∧ P3.

2

3 Solution

Each puzzle consists of a given initial column x, say of height H. The question is
to find a column w, such that cube w[j] is a rotation of cube x[j] for each j < H,
and that P (w) holds, i.e., that the transformed column w satisfies predicate P .

As the order of the cubes in the column is irrelevant for predicate P , we can
keep the order of the cubes constant.

As the specification ignores the faces 4 and 5 (top and bottom), we first consider
all choices for the vertical orientations. Let a column x be called acceptable iff, for
each color c, the total number of horizontal faces with color c equals 4:

Acc(x) : ∀ c ∈ Col : #{(j, f) | j < H, f < 4 : x[j][f] = c} = 4 ,

where #S denotes the number of elements of a set S. Indeed, predicate P implies
Acc. More precisely, P is equivalent to the conjunction Acc ∧ P0 ∧ P1 ∧ P2.

In order to discuss the rotations of the cubes, we fix a coordinate system with
coordinates ξ1, ξ2, ξ3, and corresponding standard basis vectors e1, e2, e3. Let the
solid cube be given by the inequalities |ξ1| ≤ 1, |ξ2| ≤ 1, |ξ3| ≤ 1. Let its faces be
represented by the midpoints ±e1, ±e2, ±e3. Writing F (i) for the face with index
i as described above, we have

F (0) = −e1, F (1) = −e2, F (2) = e1, F (3) = e2, F (4) = e3, F (5) = −e3.

Every cube has three pairs of opposite faces. One of them must be chosen to be
ignored. These pairs are permuted by the rotation R over the angle 2π/3 given by

R(e1) = e2 , R(e2) = e3 , R(e3) = e1 .

This rotation permutes the indices of the faces by

R(0, 1, 2, 3, 4, 5) = (1, 5, 3, 4, 2, 0) .

Using this rotation the initial column x can be transformed into the column y
given by y[j] = Re(j)x[j] for all j with 0 ≤ j < H, for all sequences of H exponents
e(j) with 0 ≤ e(j) < 3. We keep the exponents e(j) < 3 because R3 is the identity.
Predicate Acc is used to filter the set of columns y, i.e., preserve columns y with
Acc(y) and dismiss the columns y that do not satisfy Acc. Let S1 be the resulting
filtered set.

In general, the columns y ∈ S1 do not satisfy predicate P , but they can be
rotated in such a way that all its vertical faces (top, bottom) remain vertical. The
easiest way to do so is to use the horizontal rotation L over π/2 with L(e1) = e2,
L(e2) = −e1, and L(e3) = e3. This rotation permutes the indices of the faces by

L(0, 1, 2, 3, 4, 5) = (1, 2, 3, 0, 4, 5) .

Note that L4 is the identity. If rotation L is applied to all cubes of a column,
solutions are preserved. We therefore decide to keep one of the cubes (the one with
number j = H−1) unchanged and to apply rotation L to the other cubes. For each
y ∈ S1, we thus get the columns z given by z[j] = Lf(j)y[j] for all sequences of H
exponents f(j) with 0 ≤ f(j) < 4 and f(H − 1) = 0. The columns z are filtered
by the predicate P0 ∧ P2, testing the correctness of the tall faces along the e1-axis
(with indices 0 and 2). Let S2 be the resulting filtered set.

For the columns in S2, the tall faces on the e2-axis can be wrong. A third rotation
K is needed, which preserves the faces 0 and 2, and swaps the faces 1 and 3, and
also the faces 4 and 5. It is the rotation over π with K(e2) = −e2, K(e3) = −e3,
K(e1) = e1. This rotation permutes the indices of the faces by

K(0, 1, 2, 3, 4, 5) = (0, 3, 2, 1, 5, 4) .

3

Note that K2 is the identity. If rotation K is applied to all cubes of a column,
solutions are preserved. As before, we keep one of the cubes (the one with number
j = H−1) unchanged and apply rotation K to the other cubes. For each z ∈ S1, we
thus form the columns w given by w[j] = Kg(j)z[j] for all sequences of H exponents
g(j) with 0 ≤ g(j) < 2 and g(H − 1) = 0. The columns w are filtered by the
predicate P1.

The resulting filtered set S3 is the set of solutions. Or rather, it is a set of solu-
tions, and every orbit of solutions under the symmetry group of the cube contains
one element of S3.

4 Programming

As indicated, oriented colored cubes are represented by strings of type char[].
Three procedures are constructed to rotate them, for example

void rotR(char s[]);

applies rotation R to string s. Similarly, rotL and rotK apply the rotations L and
K to s, respectively.

The predicates Acc and Pf is represented by the functions

bool accept(char x[][]) {

int cnt[] = {0, ...};

for (int j = 0 ; j < H ; j++)

for (int f = 0 ; f < 4 ; f++)

cnt[x[j][f] -’A’]++;

for (int j = 0 ; j < H ; j++)

if (cnt[j] != 4) return false;

return true;

}

bool pred(int f, char x[][]) {

for (int j = 0 ; j < H ; j++)

for (int k = j + 1 ; k < H ; k++)

if (x[j][f] == x[k][f]) return false;

return true;

}

In procedure pred, it is assumed that all colors of column x belong to the set Col
of H colors.

The main search procedure is

void search1(char x[][]) {

int j, e1[] = {0, ...};

do {

if (accept(x)) search2(x);

j = 0; // determine successor

while (e1[j] == 2) {

rotR(x[j]);

e1[j] = 0;

j++;

}

if (j < H) rotR(x[j]);

e1[j]++;

} while (j < H);

}

4

Here e1 is the sequence of exponents e. The exponents e are bounded by e < 3
because R3 is the identity. The procedure is carefully created in such a way that
the final value of column x is equal to the initial value. In this way, copying of
columns is avoided. The body of the outer loop of the procedure first filters the
current column with Acc and searches its refinements, and subsequently computes
its successor. The columns accepted form the set S1, and are subjected to

void search2(char x[][]) {

int j, e2[] = {0, ...};

do {

if (pred(0, x) && pred(2, x))

search3(x);

j = 0; // determine successor

while (e2[j] == 3) {

rotL(x[j]);

e2[j] = 0;

j++;

}

if (j < H - 1) rotL(x[j]);

e2[j]++;

} while (j < H - 1);

}

Note that L4 is the identity. Therefore, the exponents e are bounded by e < 4. On
the other hand, index j remains < H − 1, so that the topmost cube is not rotated.
The columns accepted by P0 and P2 form the set S2, and are subjected to

void search3(char x[][]) {

int j, e3[] = {0, ...};

do {

if (pred(1, x)) printstack(x);

j = 0; // determine successor

while (e3[j] == 1) {

rotM(x[j]);

e3[j] = 0;

j++;

}

if (j < H - 1) rotM(x[j]);

e3[j]++;

} while (j < H - 1);

}

As rotation K2 is the identity, the exponents e are now bounded by e < 2. As in
search2, the index j remains bounded by j < H − 1 and the topmost cube is not
rotated. The columns accepted by P1 form the set S3 of the principal solutions.
Therefore, they are printed.

Example. For H = 5, the initial column

(AEDDEA,BBCBDC ,ADBDCA,BDABAE,EEEBCD)

has the unique solution

(AEEDAD,DCCBBB,CBAADD,BADEAB ,EDBCEE).

Remark. One can replace the test accept(x) by true in search1 if one replaces the
test pred(1, x) in search3 by the conjunction of pred(1, x) and pred(3, x).
This gives a marginal improvement of the worst-case time complexity, but it is bad
for the average time complexity. One can extend the program so that it also says
how to rotate the cubes.

