rede65 — 1

Passion for the missing argument

Wim H. Hesselink
21 February 2011

Ladies and gentlemen,

Some things are true. You can see that immediately. But why is it true? Can
you prove it? Do you know it by intuition? Or is it just a matter of belief?

The same holds for computer programs. Some meet their specifcation. You
may believe it. You can test it. If you want to be sure, however, then you need
a proof.

I have chosen this problem area as the theme for this lecture, which you can
also regard as a selective account of my working life up to my 65th birthday which
falls today.

What is a proof? A proof consists of a sequence of arguments. If one argument
is missing the proof may collapse as a house of cards. Hence the title of this
lecture:

Passion for the missing argument

1 To begin: heroes from the past

Ever since, in the third century BC, the Greek mathematician Euclid systemat-
ically developed geometry, we know: when you want to prove things in mathe-
matics, you need axioms to start with.

The same holds for arithmetic. The favorite axiom system for arithmetic is
due to Peano (1889). In 1931, however, Kurt Godel proved that every axiom
system for arithmetic is incomplete in the sense that there are true statements
of arithmetic that cannot be proved with this axiom system [15, 3].

In line with this thought, Alan Turing [18] invented in 1936 the Turing ma-
chine as a conceptual model of the computer (in those days, a computer was a
person who performed a calculation according to a given recipe). Turing proved
that there are problems for which there exists a recipe (computer program) that,
in all cases that the answer is “yes” will eventually print “yes”, while there is no
recipe that, in all cases that the answer is “no” will eventually print “no”. In this
way, we know already 75 years that there are things that a computer can not do.

This was pure research, but nevertheless it has resulted in the computer with
which we can do unbelievably many things.



rede65 — 2

2 The myth of Sisyphus

Barely a year ago, Peter van Emde Boas retired as a reader in Mathematical
Computer Science at the University of Amsterdam. In his valedictory address
he developed a one-to-one correspondence between his research projects and the
labours of Heracles, the hero from Greek mythology. When I heard this com-
parison, I thought I would rather compare my activities with those of Sisyphus.
Sisyphus, former king of the Greek city Ephyra, had often outwitted the gods,
and had therefore been condemned in the underworld to eternally try and roll a
block of stone in vain over the summit of a hill.

It is a familiar feeling for the experienced teacher: you try to teach something
to your students, you have done so last year, and now you can start all over again.

3 How it started for me

Between 1970 and 1975, I did my PhD in Utrecht with prof. Springer in the
algebraic geometry. This is a vast field. I then suppressed my passion for the
missing argument. When I wanted to achieve anything new in that field, I had
to build on what was proved by other people, and I should not try to verify every
proof myself.

The summit of my mathematical career was in the fall of 1979 the publication
of a paper [9] of mine in the Inventiones, a leading mathematical journal. In
January 1980, however, our third child Mark Hessel died before he was a month
old. This loss touched me so much that I lost the connection with the research
front in my branch of mathematics. This gave rise to a career switch.

In 1982/1983, I followed courses in computer science to learn writing computer
programs for solving an algebraic classification problem. I also mediated, as the
chairman of the educational committee of our subfaculty, in a conflict about the
course in Advanced Programming, which I had followed the same year. The
students argued that the course required too much work.

The following year, this course should have been given by the newly appointed
professor Bron. A few month after his appointment, however, it turned that he
was unable to give the course. Out of desperation, they asked me who had taken
the course the previous year to give it this time (1984). I accepted the challenge.
It was hard work to keep ahead of the students, but it was highly satisfactory.
The students were much more motivated for the course than for the mathematics
courses I had experience with. They wanted to learn because they wanted to be
able to do the programming assignments.

Although my students had no problem with it, the course included material
about abstract data types that I did not like. In this simpler setting, I could
give in to my passion for the missing argument. It became my first publication
in computer science [10].



rede65 — 3

4 The transition

I officially moved from mathematics to computer science in 1985. I overcame my
hesitation because of the enthousiasm of Jan van de Snepscheut, who had come
here as a new professor in computer science in 1984. The switch was sealed with
a sabbatical year in 1986/1987 at the University of Texas at Austin with the
well-known Dutch computer scientist Edsger W. Dijkstra, who was Jan’s thesis
advisor.

July 1985, I first met Dijkstra at his home in Nuenen. In this interview, I
tried to let Dijkstra divide computer science in subdisciplines. He was not willing
to do this. For him, computer science was indivisible. The central question of
computer science was to control the complexity of our artefacts.

In the year that I was in Austin, Dijkstra gave an honours course “mathe-
matical methodology” for undergraduates. I took the course. It was a strange
experience for me with my doctorate in mathematics. Dijkstra did not know
much of mathematics, but he thought as a mathematician. A central point was
to avoid or postpone case distinctions.

My weekly highlight that year was Dijkstra’s Tuesday Afternoon Club, with
Dijkstra, Jay Misra, Tony Hoare (also at Austin that year), and various others.
I remember, e.g., how Amir Pnueli had to defend his temporal logic against the
combined scepsis of Dijkstra and Hoare.

5 Programming methodology

Between 1975 and 1990, Dijkstra and his collaborators in Eindhoven and Austin
developed a technique to derive algorithms or programs from specifications. I
have learned the technique from Jan van de Snepscheut. 1 can do it only for
sequential programs, but then it can be very effective.

When Jan went to Caltech, I developed a course in Program Correctness in
which I codified the knowledge of program derivation. I extended it with recursive
procedures with parameters as in the programming language Pascal. The careful
semantical underpinning of this treatment has cost me (or yielded me) several
scientific publications [11, 12, 13].

For more than 20 years, now, the technique of program derivation has been
taught to our students in the first or second year. Passion for the missing ar-
gument has become our teaching goal. Indeed, the computer programs in this
course are difficult enough to be wrong when they are not developed correctly.
On the other hand, developing them correctly can be taught and learned.



rede65 — 4

5.1 Euclidean distance transformation

One example of the effectiveness of program derivation: around 1997, one after-
noon, Arnold Meijster entered my office because he needed a program for efficient
calculation of the Euclidean distance transformation. For now, you don’t need to
know what this is. Suffice to say that the concept was introduced around 1965,
that an efficient approximating algorithm had been found in 1980, but that an
efficient exact algorithm was unknown to us in 1997. I could not make it that
afternoon. In fact, Arnold had asked me the same thing some months before,
and I had not been able to do it that time. Yet, one never knows.

The same evening I started again with it, and now solved the problem with the
technique of program derivation. The next morning, it turned out that after his
visit to me, Arnold had also visited my PhD student Rutger Dijkstra. Rutger had
solved the problem the same evening, with the same methods. Later it turned
out that we were two years late. Efficient exact algorithms for the Euclidean
distance transform had been published in 1995. For this reason, we only published
our algorithm in conference proceedings [16], and withdrew a submission to the
important journal PAMI. Some years later, we saw to our dismay that another
group of authors had succeeded in publishing their version of such an algorithm

in PAMI.

6 Management and organisation

In management circles, people are rarely interested in complete arguments. I
have therefore seldom shown my passion for missing arguments there.

Yet, there was passion. Passion for quality. Quality of education and research,
quality of teachers, quality of labour relations, quality of the relationship between
students and staff, and quality as a teaching goal for computer science. Out of
passion for quality, I have rolled with Sisyphus many a boulder up hill.

6.1 A first visiting committee

In 1979/1980, I was secretary of the board of the subfaculty of Mathematics, with
Hendrik Hoogstraten as chairman. Because the faculty of Natural Sciences had
no idea what was happening in mathematics, we were subjected in January 1980
to a so-called “visiting committee”, an administrative innovation that has been
used later on a much wider scale.

The opinion of the committee was very positive. Striking was the recommen-
dation to take Computer Science out of the subfaculty, and to make it a separate
group within the faculty. This has happened indeed. It had the good result that
the necessary growth of computer science could be realised at the expense not
only of mathematics. The decision is reversed later, but by that time the air was
clear again.



rede65 — 5

6.2 Ups and downs of computer science

After my return from Texas in 1987, much had changed. Roland Backhouse had
come as a new professor. Jan and Roland had taken the initiative to organize
a scientific conference for the 375th anniversary of the university. It became
“Mathematics of Program Construction”, June 1989 [19]. The conference was a
success: it was the beginning of a sequence of until now 10 MPC conferences.

In the mean time, however, Jan van de Snepscheut had become so frustrated
by what he felt as a lack of collaboration higher up in the university, that in
September 1989 he left for Caltech. His departure was a great loss for computer
science in Groningen. He was an inspiring leader and an enthusiastic teacher and
researcher.

In september 1990, Roland Backhouse also left, to Eindhoven University. The
department was more or less back to square one. We had become frighteningly
small.

6.3 Forward computer science

The department was strengthened in 1991 by the new professors Nicolai Petkov
and Gerard Renardel, followed in 1993 by Ben Spaanenburg. After my appoint-
ment as a professor in 1994, I became chairman of the department. Looking
back now, it was a good time. Not without problems, of course, but we had
enough staff and good relations between staff and students to offer a good educa-
tion. There was a more or less democratic structure in which I could work well.
Research was the responsibility of the IWI, I'll come back to this later.

My function as chairman lasted to 1997. Then the departments (vakgroepen)
were abolished and a vertical management structure was introduced. Research
and education were separated. Research was to be organized by the local research
school, and education by educational institutes. This change made me very
unhappy. Not so much because I had lost my influence, but rather because the
communication had disappeared. I did not know any longer what was happening,
and nobody seemed to know. The old structures for communication had been
removed, and new structures for this had yet to be invented and installed.

6.4 Research schools

The Dutch idea of research schools dates from 1991. Around 1995, things became
serious. Nobody knew the consequences, but the idea was that there could not
be any research outside the research schools. I therefore became a member of the
research school IPA, which was created in 1995. The IPA was (and is) especially
useful for the participating PhD students, but also for me it was a good oppor-
tunity for contacts with colleagues in the country and to participate in inspiring
conferences.



rede65 — 6

The same year, 1995, in Groningen, the research institute for mathematics and
computer science IWI was established. There were never any problems between
these national and local forms of collaboration.

6.5 Committee Van Lint

The research review of 1997 went so bad for the IWI that, in the fall of 1998,
the Board of the University installed a committee Van Lint for advice on how
to proceed. Of course, the committee needed some time to investigate and to
come with recommendations. With hindsight, it was only one year, but in my
remembrance it is longer than the three years of my chairmanship. There was
great uncertainty within the staff, and I could do nothing about it, because I
lacked information myself.

The report of the committee was released in June 1999. It contained a dozen of
recommendations. The highlight perhaps was the recommendation to strengthen
the esprit de corps in the IWI. In order to strengthen research it was necessary
to attract new talent, but only after rigorous selection. Researchers could only
be admitted as fellow to the IWI based on quantitative indicators. Researchers
that were not admitted to the IWI, should retain very limited opportunities
to do research. They would have to do more teaching. I'll come back to the
consequences of this.

6.6 FEducational director

In the year 2005, I was educational director for computer science. We felt threat-
ened by the upcoming educational review of 2006. One of the requirements we
had to reckon with was that our courses, including those in the bachelor phase,
had to be given by staff that was involved in research. This of course was in
conflict with the decision to exclude teachers from research involvement.

Apart from this, at the end of 2005, I became involved in a conflict. Because
I did not receive the recognition I felt entitled to as a guardian of the quality of
our education, I resigned.

It was for me, and not only for me, very painful. Jos Roerdink, helped by
several others, has performed a miracle in rewriting the self-evaluation in such
a way that we came successfully through the educational review 2006. Gerard
Renardel succeeded me as educational director.

Since those days, most of the teachers not admitted to the IWI have left the
department, partly for other jobs within the university. We are therefore now in
a situation that important courses in the bachelor program are given by external
staff, hired for the occasion (at the moment I am one of these). Indeed, the
courses have to be given and the staff with research involvement is too small,
and has too much work in education and research, as well as with the writing of
research proposals that have a very low probability of yielding money.



redeb5 — 7

6.7 Exam committee

I don’t remember exactly when I became a member of the exam committee. It
must have been before 2001. In August 2001, there was a student who appealed
because of the grade 6% for his final thesis. As the only member of the committee
that was not on holiday I had to refer him to the Court of Appeal for the Exams
of the University. At the same time, we had to start a mediation process. In the
end, this mediation succeeded, and the grade 6% was retained.

Matters of appeal are the most interesting matters for the exam committee.
In those days, most of the daily work was to decide whether a student who had
obtained results under continuously changing educational programs in the end
had obtained enough results to grant him a diploma. Nowadays, more work is in
the admission of foreign students to our master program. New rules for guarding
the quality of tests and examinations makes the job even heavier, but I have
resigned from this office last fall. These problems are for my successor Michael
Biehl.

7 Research

It is with research that missing arguments are felt most keenly. Next to the
passion for the missing argument there is also the love for the excellent argument.
In this respect, the summit of my remembrances is from a lecture by George
Kempf in Les Plans sur Baix, Switserland, in 1977. His explanation was rather
hazy, so that most of the audience was baffled, but all of a sudden I saw the core
of a beautiful argument.

It was as follows. Please, try to imagine a patato. The patato is called convex
if, for any pair of points of the patato, the whole line segment that connects these
points is also in the patato. So, the patato is “filled”. It is not a banana or a
pear. Of course, Kempf was talking about arbitrary geometric figures, and not
specifically about patatoes.

Anyway, try to imagine such a convex patato. For any point P outside the
patato, then, there is precisely one point in the patato closest to P. This is
because, if there were two points A and B in the patato equally close to P, then
the midpoint of the line segment AB is even closer to P.

I do not expect you to be wildly enthusiastic about this. Yet, in the con-
text of Kempf’s lecture, it was a beautiful geometric argument with far-reaching
consequences.

It is undoubtedly this love for careful arguments that I shared with Edsger
Dijkstra and that made it possible to work with him fruitfully. Yet Dijkstra was
more finnicky than I am. For him, an argument had to be beautiful, while I
am often content with a effective but somewhat ugly argument. For Dijkstra’s
60th birthday in 1990, we have written a book under the title “Beauty is our



rede65 — 8

business” [4]. I have written my personal contribution to this book with special
care to comply with Dijkstra’s preferences.

7.1 The meaning of programs, angels and demons

After my transition to computer science, my first concern was the question of
the meaning of programs. I wanted a mathematical foundation for programming
methodology. In programming, it is important to be able to postpone prema-
ture design decisions, but this can lead to uncertainty, so called nondeterminism.
There are two forms of nondeterminism: angelic nondeterminism in which we
assume that the best possible alternative will be chosen, and demonic nonde-
terminism in which we are prepared for the worst possible scenario. In angelic
nondeterminism, we can expect assistence from our personal guardian angel. In
demonic nondeterminism, we need to reckon with obstruction by a malicious
demon.

I have worked on this mainly between 1986 and 1994. Around 2007, I received
a paper from two Englishmen (Morris and Tyrrell) in which angelic and demonic
nondeterminism were combined in a way that reminded me of an old attempt
of mine to model this, years backward. When I got a second paper about this,
some months later, I searched through old manuscripts of mine. Indeed, I found a
manuscript with ideas in this direction that ended in failure, but to my surprise I
also found a paper from January 1987 in which I succeeded, and obtained results
more or less similar to those of Morris and Tyrrell. At that time I was with
Dijkstra at Austin, with continuously new ideas around me. This manuscript I
had cleanly forgotten.

7.2 The reading group

When Jan van de Snepscheut left for Caltech in 1989, I inherited his Tuesday
Afternoon Club. It was a group of staff and students who came together weekly.
In Dijkstra’s Tuesday Afternoon Club, the idea was to discuss and do research
on the spot. This asks for great and continuous creativity from the organizer,
something Dijkstra was able to, Jan barely so, but I could not do this. I therefore
changed the formula into the carefully reading of scientific papers, mostly from
elsewhere, but sometimes our own papers (finished or in the process of being
written).

This reading group has existed for 20 years. It has offered me much. We
have read papers that inspired me to enter new research areas, and I have sub-
jected many papers to the scrutiny of this group. For the writer of a paper it is
very useful, though often frustrating, to observe someone else trying to read and
interpret what you have written.



rede65 — 9

7.3 Concurrency

From 1992 onward, I have moved into the field of the design and correctness of
concurrent algorithms. With concurrency, the problem is that several comput-
ers, or processes on a single computer, communicate with each other for the sake
of some shared goal, or to control a common resource like a data base. This
makes programming more difficult because you never know which of them will
do the next step. This research area becomes nowadays steadily more impor-
tant because modern computers are multicore computers. This means that they
actually consist of several processors that have to divide their tasks efficiently.

The way to remain certain about aspects of the behaviour of such a distributed
system is to analyse which properties are not made false by any step of the system.
These properties are called the invariants of the system. As the distributed
system at any moment can do many different steps, the proof of invariance usually
requires many case distinctions.

Humans are not very good in this, because we tend to ignore seemingly inno-
cent cases. I therefore use a theorem prover. This is a computer program with
which you can verify mathematical theorems. It has no real intelligence, but it
has a good memory. It can easily register and remember what has been proven,
and tell you which proof obligations remain.

My shift to concurrency occurred because in the reading group we read a
paper [8] of Herlihy, that we could not follow completely. I therefore studied
the paper so deeply that, in the end, I came up with a different algorithm for
Herlihy’s problem. One of the reviewers of that paper raised so many doubts
about my argument that I felt forced to study the matter even more deeply. This
again led to a proof, but the details were so daunting that whenever I came to
the end of the proof, I could not remember whether I had really treated all cases
in the beginning.

This led me to use a theorem prover. In Austin, in 1986, I had taken a course
of J Moore about his theorem prover NQTHM, but I had never “touched” the
prover at the time. This was going to change. I gave myself six months to learn
to work with NQTHM and to prove my algorithm. Fortunately, J Moore was
always willing to answer my emailed questions about the prover. Thanks to this
long-distance coaching, I indeed succeeded in proving the algorithm.

That I like working with a theorem prover, is undoubtedly because it fits
with my passion for the missing argument. Between colleagues there is often not
enough time to go into the complete verification of a result. There are always
other priorities. A theorem prover however is only convinced by the proper
argument.



rede65 — 10

7.4 Jan Friso Groote and Gao Hui

Around 1997, a collaboration with Jan Friso Groote from Eindhoven University
emerged, first centered on wait-free memory management [14]. Subsequently, we
tried to implement wait-free hashtables. The latter project got stuck when I had
proved the first part with the theorem prover NQTHM, and Jan Friso started
to prove the second part with his theorem prover PVS, but became educational
director.

In the summer of 2000, Gao Hui from China came to Groningen to accompany
his wife who had obtained a PhD position in chemistry here. Gao wanted to do
a PhD in computer science with me. I had no position for him, but he got a
PhD position in statistics. A year later, however, both his supervisors left the
institute. Then it was arranged that Gao would shift to computer science and
work on a PhD with me.

He worked very hard. After one year, he had seen enough computer science
and especially concurrency, that he could try and attack the problem of the wait-
free hashtables of Jan Friso and me. Jan Friso came to Groningen for a day to
introduce Gao to his PVS proof. It took Gao a year and a half to conclude the
proof, and to write a paper about it [5]. Alas, Jan Friso and I had waited too
long, and had lost the priority: in the mean time another paper on wait-free
hashtables had appeared [17]. Yet, Gao got his doctorate on a beautiful thesis
[6] in Groningen, April 2005, with Jan Friso as second promotor and Maurice
Herlihy in the reading committee.

We have invited Gao to come to Groningen today, but alas he could not come
because of problems with visa and passports.

7.5 Predicting computations

If I am not mistaken, my first encounter with prophecy variables was during the
inaugural address [7] of Jan Friso where he conjectured that a correctness proof of
Bloom’s algorithm would need prophecy variables. This seemed ridiculous to me
because I had proved this algorithm already without prophecy variables. With
hindsight, however, Jan Friso was probably right, because in my proof I had used
a general principle the correctness of which I have proved later using prophecy
variables.

What are prophecy variables? They are auxiliary variables that are added
to a computer program to predict the future development of the computation.
They are useful for the correctness proof of the algorithm, but play no role in the
computation itself. They have been introduced in 1991 by Abadi and Lamport
[1]. T needed them in 2002 when I wanted to prove something about transactions
in data bases. The prophecy variables of Abadi and Lamport, however, were too
restricted for my purposes. I had to invent something stronger. I have called
these eternity variables.



rede65 — 11

Reflexion on these issues leads to speculations about predestination, with
a supreme being that in one glance can see the complete development of his
creation, from the beginning to the end. Here, the development of the creation
stands for the execution of the program. I took some inspiration from the books
on Dune by Frank Herbert. Actually, it is quite simple: you can view an infinite
sequence of numbers as a single object, without taking into account that the
numbers are delivered one by one, by a sensor or by throwing dice. The conceptual
difficulty is that you imagine to know the final outcome of a process before its
conclusion (and without using this knowledge).

7.6 Mutual exclusion

My latest collaboration with someone outside the institute is with Alex Aravind
from Northern British Columbia. I have e-mail contact with him since August
2008, but I met him yesterday for the first time, and he is now in the audience.

In 2007, Alex submitted a paper to Information Processing Letters. The paper
contained a new interesting algorithm for mutual exclusion, but it was rejected
by the journal because it had no convincing proof of correctness. I was one of the
anonymous referees, but when the paper was rejected, I contacted the author,
because I found it a beautiful algorithm and I could prove its correctness [2].

It is a good collaboration based on complementarity. Alex has very good ideas
for algorithms, and I am often able to prove or refute these ideas.

Let me explain his first algorithm as a children party. The children are playing
in the garden. When they are thirsty, they can enter the house to get a drink.
There is, however, only one glass. The problem is to organize that children never
simultaneously grab the glass. This is called mutual exclusion. It was proposed
by Dijkstra in 1965 for computers (not for children).

Alex Aravind devised the following solution. Suppose there are N children.
Make sure that the room with the glass has N corners, numbered from 0 to
N — 1. The glass is in corner 0. Every child in corner 0 can grab the glass. After
drinking, the child goes back to play in the garden (or it may go home). When
it is thirsty again, it may come back to the room. A child that enters the room
counts the number of children in the room. When a child in the room sees that
there are not more than k children in the room, it may go to corner k. A child
that sees no other children in the room, may therefore immediately go to corner
0 and have a drink. Suppose, however, that three children enter the room at the
same time. All three see two other children in the room. They go therefore to
corner two, and there is no possibility for progress anymore. Alex solved this by
putting a chair in every corner. If a child is in a corner with a number unequal to
0, it may climb onto the chair. When it does so, it pushes the present occupant
from the chair. When a child is pushed from the chair in corner k, it may go to
corner k — 1.

This organization indeed guarantees that there is never more than one child



rede65 — 12

in corner 0. Children can pass one another, but even a clumsy child is passed
never more than /N times.

I have constructed the proofs of these facts. They are ingeneous, and not of
a beauty that Dijkstra would have appreciated. They are effective, however, and
verified with the theorem prover PVS.

8 Acknowledgements

Colleagues, staff, and students, of computer science, mathematics, and artificial
intelligence in Groningen, I am grateful that I have been able to work with you
here for 35 years.

I am grateful to the Groningen University Fund that it has enabled me to do
this for 16 years as a professor.

I cannot thank all people with whom I have worked closely, all these years.
The list of those people is too long, and if I tried, it would turn out that the list
was incomplete.

One exception must be made, however, for Gerard Renardel. Dear Gerard,
you came in 1991 as a professor to Groningen to lead the group of fundamental
computing science, with me as a member of it. We have collaborated 18 years
fruitfully and without conflict. I am grateful to you for this collaboration and for
the space you have granted me.

Yet another exception must be made: for my wife Marijke, with whom I am
married for 40 years, in three days from now. Dear Marijke, thank you very
much. Without you, none of this would have been possible.

9 Finally

Shaking hands with a departing professor is also a mutual exclusion problem. I
suggest that we solve this concurrently in a nondeterministic fashion. You need
not form a queue, but please take a drink where drink is available, and shake my
hand, if it is free and you want to shake it.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theor.
Comput. Sci., 82:253-284, 1991.

[2] A.A. Aravind and W.H. Hesselink. A queue based mutual exclusion algo-
rithm. Acta Inf., 46:73-86, 2009.

[3] A. Doxiadis, C.H. Papadimitriou, A. Papadatos, and A. di Donna. Logi-
comiz. Dutch Media Uitgevers, 2009.



[4]

[5]

[10]

[11]

[15]

[16]

[17]

rede65 — 13

W.H.J. Feijen et al., editors. Beauty is our business, a birthday salute to
Edsger W. Digkstra. Springer, 1990.

H. Gao, J.F. Groote, and W.H. Hesselink. Lock-free dynamic hash tables
with open addressing. Distr. Comput., 17:21-42, 2005.

Hui Gao. Design and verification of lock-free parallel algorithms. PhD thesis,
University of Groningen, April 2005.

J.F. Groote. We moeten software leren beheersen, 1999. Intreerede, Tech-
nische Universiteit Eindhoven.

M. Herlihy. Wait—free synchronization. ACM Trans. Program. Lang. Syst.,
13:124-149, 1991.

W.H. Hesselink. Desingularizations of varieties of nullforms. Inventiones
math., 55:141-163, 1979.

W.H. Hesselink. A mathematical approach to nondeterminism in data types.
ACM Trans. Program. Lang. Syst., 10:87-117, 1988.

W.H. Hesselink. Programs, Recursion and Unbounded Choice, predicate
transformation semantics and transformation rules. Cambridge University
Press, Cambridge, 1992. (Cambridge Tracts in Theoretical Computer Sci-
ence 27).

W.H. Hesselink. Proof rules for recursive procedures. Formal Aspects of
Comput., 5:554-570, 1993.

W.H. Hesselink. Predicate transformers for recursive procedures with local
variables. Formal Aspects of Computing, 11:616—636, 1999.

W.H. Hesselink and J.F. Groote. Wait-free concurrent memory management
by Create, and Read until Deletion (CaRuD). Distr. Comput., 14:31-39,
2001.

D.R. Hofstadter. Godel, Escher, Bach: an eternal golden braid. Vintage
Books, 1979.

A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink. A general algorithm
for computing distance transforms in linear time. In J. Goutsias, L. Vincent,
and D.S. Bloomberg, editors, Mathematical morphology and its applications

to image and signal processing (Proc. 5th Int. Conf.), pages 331-340. Kluwer,
2000.

O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible hash ta-
bles. In Proceedings of the twenty-second annual symposium on Principles
of distributed computing, pages 102-111. ACM Press, 2003.



rede65 — 14

[18] A.M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proc. of the London Mathematical Society 2, 42:230-265,
1936.

[19] J. van de Snepscheut, editor. Mathematics of Program Construction, volume
375 of LNCS. Springer V., 1988.



